Initial perceptions of mathematical reasoning among lower and upper secondary school students in Andorra

Authors

Keywords:

Reasoning, demonstration, mathematics, secondary education

Abstract

This study evaluates students’ initial perceptions of various types of reasoning, with the aim to determine whether they understand these concepts and to assess their ability to distinguish between empirical verifications and generic demonstrations. The sample includes 28 lower secondary school students and 41 upper secondary school students, distributed into four heterogeneous groups (two from each level), none with any prior training in demonstrations. The participants took a test in which they had to evaluate different reasonings provided for the same property and then demonstrate a similar property. The results show that upper secondary school students are better at recognizing the limitations of empirical reasoning and show a greater inclination towards algebra, while lower secondary school students tend to prefer reasoning based on empirical verification through examples. A significant difference is also detected between perceived understanding and the ability to apply reasoning to a similar property. Additionally, nearly all students face difficulties in formulating an acceptable demonstration, making errors in both the use of algebra and the understanding of the underlying concepts. These results indicate a need to work on the understanding of visual representations and to help students focus on the general characteristics of generic examples in order to enhance their capacity to comprehend demonstrations.

Downloads

Download data is not yet available.

References

Aricha-Metzer, I., i Zaslavsky, O. (2019). The nature of students’ productive and nonproductive example-use for proving. The Journal of Mathematical Behavior, 53, 304–322. https://doi.org/10.1016/j.jmathb.2017.09.002

Balacheff, N. (1988). Une étude des processus de preuve en mathématique chez des élèves de collège. Institut National Polytechnique de Grenoble-INPG; Université Joseph-Fourier.

Biehler, R., i Kempen, L. (2013). Students’ use of variables and examples in their transition from generic proof to formal proof. Dins B. Ubuz, C. Haser, i M. A. Mariotti (ed.). Proceedings of the 8th Congress of the European Society for Research in Mathematics Education (p. 86-95). ESRME. http://cerme8.metu.edu.tr/wgpapers/WG1/WG1_Kempen.pdf

Dogan, M. F., i Williams-Pierce, C. (2021). The role of generic examples in teachers’ proving activities. Educational Studies in Mathematics, 106(1), 133-150. https://doi.org/10.1007/s10649-020-10002-3

Dreyfus, T., Nardi, E., i Leikin, R. (2012). Forms of proof and proving in the classroom. Dins G. Hanna, i Villiers, M. de (ed.). Proof and proving in mathematics education: The 19th ICMI Study (p. 191-213). Springer. https://doi.org/10.1007/978-94-007-2129-6_8

Govern d’Andorra (2023). Programa de matemàtiques de segona ensenyança de l’escola andorrana - Decret del 12-7-2023 de publicació del programa de matemàtiques de segona ensenyança de l’escola andorrana. Butlletí Oficial del Principat d’Andorra (BOPA).

Hanna, G., i Jahnke, H. N. (1996). Proof and proving. Dins A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, i C. Laborde, C. (ed.). International handbook of mathematics education. Part 1 (p. 877-908). Springer. https://doi.org/10.1007/978-94-009-1465-0_24

Healy, L., i Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396-428. https://doi.org/10.2307/749651

Karunakaran, S., Freeburn, B., Konuk, N., i Arbaugh, F. (2014). Improving preservice secondary mathematics teachers’ capability with generic example proofs.

Mathematics Teacher Educator, 2(2), 158–170. https://doi.org/10.5951/mathteaceduc.2.2.0158

Kempen, L. (2024). The vicious circle of high-school graduates’ proof construction. The 15th International Congress on Mathematical Education, 7-14 Juliol, Sydney, Australia.

Knuth, E., Choppin, J. M., i Bieda, K. N. (2010). Middle school students’ production of mathematical justifications. Dins D. A. Stylianou, M. L. Blanton, i E. J. Knuth, E. J. Teaching and learning proof across the grades (p. 153-170). Routledge.

Knuth, E., i Na, G. (2020). A comparative study of example use in the proving-related activities of Korean and American students. The 14th International Congress on Mathematical Education.

Knuth, E., Kim, H., Zaslavsky, O., Vinsonhaler, R., Gaddis, D., i Fernandez, L. (2020). Teachers’ views about the role of examples in proving-related activities. Journal of Educational Research in Mathematics, 30, 115-134. https://doi.org/10.29275/jerm.2020.08.sp.1.115

Leron, U., i Zaslavsky, O. (2014). Generic proving: Reflections on scope and method. Dins M. Pitici (ed.). The best writing on mathematics 2014 (p. 198-215). Princeton University Press. https://doi.org/10.1515/9781400865307-017

Mariotti, M. A. (2006). Proof and proving in mathematics education. Dins Á. Gutiérrez, i P. Boero (ed.). Handbook of research on the psychology of mathematics education (p. 173-204). Brill Sense.

Mason, J., i Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational Studies in Mathematics, 15(3), 277-289. https://doi.org/10.1007/BF00312078

Mejia-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., i Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics, 79(1), 3-18. https://doi.org/ 10.1007/s10649-011-9349-7

Niss, M., i Jensen, T. H. (2002). Kompetencer og matematiklæring: ideer og inspiration til udvikling af matematikundervisning i Danmark. Undervisningsministeriet.

Reid, D. A., i Knipping, C. (2010). Proof in mathematics education: Research, learning and teaching. Brill. https://doi.org/10.1163/9789460912467

Reid, D. A., i Vallejo Vargas, E. (2018). When is a generic argument a proof? Dins A. J. Stylianides, i G. Harel, G. Advances in mathematics education research on proof and proving (p. 239-251). Springer. https://doi.org/10.1007/978-3-319-70996-3_17

Rowland, T. (2001). Generic proofs in number theory. Dins S. R. Campbell, i R. Zazkis (ed.). Learning and teaching number theory: Research in cognition and instruction (p. 157-183). ABC-CLIO. https://www.flmjournal.org/Articles/7DE6E459B48131C6FD31327F97E5B.pdf

Stylianides, G. J., i Stylianides, A. J. (2006). Making proof central to pre-high school mathematics is an appropriate instructional goal: Provable, refutable, or undecidable proposition? Proceedings of PME 30, 5, 209-216.

Stylianides, A. J., Komatsu, K., Weber, K., i Stylianides, G. J. (2022). Dins M. Danesi (ed.). Teaching and learning authentic mathematics: The case of proving BT - Handbook of cognitive mathematics (p. 727–761). Springer International Publishing. https://doi.org/10.1007/978-3-031-03945-4_9

Stylianides, G. J., Stylianides, A. J., i Weber, K. (2017). Research on the teaching and learning of proof: Taking stock and moving forward. Dins J. Cai (ed.). Compendium for research in mathematics education (p. 237–266). NCTM.

Zaslavsky, O. (2018). Genericity, conviction, and conventions: Examples that prove and examples that don’t prove. Dins A. J. Stylianides, i G. Harel (ed.), Advances in mathematics education research on proof and proving (p. 283-298). Springer.

Downloads

Published

2025-11-03

How to Cite

Cerqueda Santacreu, G., & Colom Torrens, Y. (2025). Initial perceptions of mathematical reasoning among lower and upper secondary school students in Andorra. Revista Catalana De Pedagogia, 28, 68–84. Retrieved from https://revistes.iec.cat/index.php/RCP/article/view/154438