Initial perceptions of mathematical reasoning among lower and upper secondary school students in Andorra Authors Georgina Cerqueda Santacreu Universitat d'Andorra, Andorra https://orcid.org/0000-0002-7411-2537 Yolanda Colom Torrens Universitat d’Andorra, Andorra https://orcid.org/0000-0002-4590-8384 DOI: 10.2436/20.3007.01.225 Keywords: Reasoning, demonstration, mathematics, secondary education Abstract This study evaluates students’ initial perceptions of various types of reasoning, with the aim to determine whether they understand these concepts and to assess their ability to distinguish between empirical verifications and generic demonstrations. The sample includes 28 lower secondary school students and 41 upper secondary school students, distributed into four heterogeneous groups (two from each level), none with any prior training in demonstrations. The participants took a test in which they had to evaluate different reasonings provided for the same property and then demonstrate a similar property. The results show that upper secondary school students are better at recognizing the limitations of empirical reasoning and show a greater inclination towards algebra, while lower secondary school students tend to prefer reasoning based on empirical verification through examples. A significant difference is also detected between perceived understanding and the ability to apply reasoning to a similar property. Additionally, nearly all students face difficulties in formulating an acceptable demonstration, making errors in both the use of algebra and the understanding of the underlying concepts. These results indicate a need to work on the understanding of visual representations and to help students focus on the general characteristics of generic examples in order to enhance their capacity to comprehend demonstrations. Downloads Download data is not yet available. References Aricha-Metzer, I., i Zaslavsky, O. (2019). The nature of students’ productive and nonproductive example-use for proving. The Journal of Mathematical Behavior, 53, 304–322. https://doi.org/10.1016/j.jmathb.2017.09.002 Balacheff, N. (1988). Une étude des processus de preuve en mathématique chez des élèves de collège. Institut National Polytechnique de Grenoble-INPG; Université Joseph-Fourier. Biehler, R., i Kempen, L. (2013). Students’ use of variables and examples in their transition from generic proof to formal proof. Dins B. Ubuz, C. Haser, i M. A. Mariotti (ed.). Proceedings of the 8th Congress of the European Society for Research in Mathematics Education (p. 86-95). ESRME. http://cerme8.metu.edu.tr/wgpapers/WG1/WG1_Kempen.pdf Dogan, M. F., i Williams-Pierce, C. (2021). The role of generic examples in teachers’ proving activities. Educational Studies in Mathematics, 106(1), 133-150. https://doi.org/10.1007/s10649-020-10002-3 Dreyfus, T., Nardi, E., i Leikin, R. (2012). Forms of proof and proving in the classroom. Dins G. Hanna, i Villiers, M. de (ed.). Proof and proving in mathematics education: The 19th ICMI Study (p. 191-213). Springer. https://doi.org/10.1007/978-94-007-2129-6_8 Govern d’Andorra (2023). Programa de matemàtiques de segona ensenyança de l’escola andorrana - Decret del 12-7-2023 de publicació del programa de matemàtiques de segona ensenyança de l’escola andorrana. Butlletí Oficial del Principat d’Andorra (BOPA). Hanna, G., i Jahnke, H. N. (1996). Proof and proving. Dins A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, i C. Laborde, C. (ed.). International handbook of mathematics education. Part 1 (p. 877-908). Springer. https://doi.org/10.1007/978-94-009-1465-0_24 Healy, L., i Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics Education, 31(4), 396-428. https://doi.org/10.2307/749651 Karunakaran, S., Freeburn, B., Konuk, N., i Arbaugh, F. (2014). Improving preservice secondary mathematics teachers’ capability with generic example proofs. Mathematics Teacher Educator, 2(2), 158–170. https://doi.org/10.5951/mathteaceduc.2.2.0158 Kempen, L. (2024). The vicious circle of high-school graduates’ proof construction. The 15th International Congress on Mathematical Education, 7-14 Juliol, Sydney, Australia. Knuth, E., Choppin, J. M., i Bieda, K. N. (2010). Middle school students’ production of mathematical justifications. Dins D. A. Stylianou, M. L. Blanton, i E. J. Knuth, E. J. Teaching and learning proof across the grades (p. 153-170). Routledge. Knuth, E., i Na, G. (2020). A comparative study of example use in the proving-related activities of Korean and American students. The 14th International Congress on Mathematical Education. Knuth, E., Kim, H., Zaslavsky, O., Vinsonhaler, R., Gaddis, D., i Fernandez, L. (2020). Teachers’ views about the role of examples in proving-related activities. Journal of Educational Research in Mathematics, 30, 115-134. https://doi.org/10.29275/jerm.2020.08.sp.1.115 Leron, U., i Zaslavsky, O. (2014). Generic proving: Reflections on scope and method. Dins M. Pitici (ed.). The best writing on mathematics 2014 (p. 198-215). Princeton University Press. https://doi.org/10.1515/9781400865307-017 Mariotti, M. A. (2006). Proof and proving in mathematics education. Dins Á. Gutiérrez, i P. Boero (ed.). Handbook of research on the psychology of mathematics education (p. 173-204). Brill Sense. Mason, J., i Pimm, D. (1984). Generic examples: Seeing the general in the particular. Educational Studies in Mathematics, 15(3), 277-289. https://doi.org/10.1007/BF00312078 Mejia-Ramos, J. P., Fuller, E., Weber, K., Rhoads, K., i Samkoff, A. (2012). An assessment model for proof comprehension in undergraduate mathematics. Educational Studies in Mathematics, 79(1), 3-18. https://doi.org/ 10.1007/s10649-011-9349-7 Niss, M., i Jensen, T. H. (2002). Kompetencer og matematiklæring: ideer og inspiration til udvikling af matematikundervisning i Danmark. Undervisningsministeriet. Reid, D. A., i Knipping, C. (2010). Proof in mathematics education: Research, learning and teaching. Brill. https://doi.org/10.1163/9789460912467 Reid, D. A., i Vallejo Vargas, E. (2018). When is a generic argument a proof? Dins A. J. Stylianides, i G. Harel, G. Advances in mathematics education research on proof and proving (p. 239-251). Springer. https://doi.org/10.1007/978-3-319-70996-3_17 Rowland, T. (2001). Generic proofs in number theory. Dins S. R. Campbell, i R. Zazkis (ed.). Learning and teaching number theory: Research in cognition and instruction (p. 157-183). ABC-CLIO. https://www.flmjournal.org/Articles/7DE6E459B48131C6FD31327F97E5B.pdf Stylianides, G. J., i Stylianides, A. J. (2006). Making proof central to pre-high school mathematics is an appropriate instructional goal: Provable, refutable, or undecidable proposition? Proceedings of PME 30, 5, 209-216. Stylianides, A. J., Komatsu, K., Weber, K., i Stylianides, G. J. (2022). Dins M. Danesi (ed.). Teaching and learning authentic mathematics: The case of proving BT - Handbook of cognitive mathematics (p. 727–761). Springer International Publishing. https://doi.org/10.1007/978-3-031-03945-4_9 Stylianides, G. J., Stylianides, A. J., i Weber, K. (2017). Research on the teaching and learning of proof: Taking stock and moving forward. Dins J. Cai (ed.). Compendium for research in mathematics education (p. 237–266). NCTM. Zaslavsky, O. (2018). Genericity, conviction, and conventions: Examples that prove and examples that don’t prove. Dins A. J. Stylianides, i G. Harel (ed.), Advances in mathematics education research on proof and proving (p. 283-298). Springer. Downloads PDF (Català) Published 2025-11-03 How to Cite Cerqueda Santacreu, G., & Colom Torrens, Y. (2025). Initial perceptions of mathematical reasoning among lower and upper secondary school students in Andorra. Revista Catalana De Pedagogia, 28, 68–84. Retrieved from https://revistes.iec.cat/index.php/RCP/article/view/154438 More Citation Formats ACM ACS APA ABNT Chicago Harvard IEEE MLA Turabian Vancouver Download Citation Endnote/Zotero/Mendeley (RIS) BibTeX Issue Vol. 28 (2025): Tendències d’èxit, realitats emergents i noves expectatives en educació Section Research articles License Copyright (c) 2025 Georgina Cerqueda Santacreu This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. The intellectual property of articles belongs to the respective authors. On submitting articles for publication to the journal Revista Catalana de Pedagogia, authors accept the following terms: Authors grant to Societat Catalana de Pedagogia (a subsidiary of Institut d’Estudis Catalans) the rights of reproduction, communication to the public and distribution of the articles submitted for publication to Revista Catalana de Pedagogia. Authors answer to Societat Catalana de Pedagogia for the authorship and originality of submitted articles. Authors are responsible for obtaining permission for the reproduction of all graphic material included in articles. Societat Catalana de Pedagogia declines all liability for the possible infringement of intellectual property rights by authors. The contents published in the journal, unless otherwise stated in the text or in the graphic material, are subject to a Creative Commons Attribution-NonCommercial-NoDerivs (by-nc-nd) 3.0 Spain licence, the complete text of which may be found at https://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en. Consequently, the general public is authorised to reproduce, distribute and communicate the work, provided that its authorship and the body publishing it are acknowledged, and that no commercial use and no derivative works are made of it. The journal is not responsible for the ideas and opinions expressed by the authors of the published articles.