The mathematics of satins Authors Carles Lladó Josep M. Brunat DOI: https://doi.org/10.2436/20.2002.01.108 Keywords: fabric, design, sateen, satin, square satin, symmetric satin, lattice, extended Euclid's algorithm, optimal basis, Fibonacci numbers, Fibonacci satin Abstract Satins are a particularly relevant class of fabrics. This paper provides a general framework that identifies a satin with a Z2 lattice and relates the analysis of satins to classical results in number theory and geometry. Square, symmetrical (in particular rectangular symmetrical and rhombus symmetrical) and concordant satins are dealt with. Fibonacci satins are also introduced, characterizing those that are symmetrical and those that are square. Downloads PDF (Català) Published 2023-12-21 How to Cite Lladó, C., & Brunat, J. M. (2023). The mathematics of satins. Butlletí De La Societat Catalana De Matemàtiques, 38(1), 33–66. https://doi.org/10.2436/20.2002.01.108 More Citation Formats ACM ACS APA ABNT Chicago Harvard IEEE MLA Turabian Vancouver Download Citation Endnote/Zotero/Mendeley (RIS) BibTeX Issue Vol. 38 No. 1 (2023) Section Articles License The intellectual property of articles belongs to the respective authors.On submitting articles for publication to the journal Butlletí de la Societat Catalana de Matemàtiques, authors accept the following terms:Authors assign to Societat Catalana de Matemàtiques (a subsidiary of Institut d’Estudis Catalans) the rights of reproduction, communication to the public and distribution of the articles submitted for publication to Butlletí de la Societat Catalana de Matemàtiques.Authors answer to Societat Catalana de Matemàtiques for the authorship and originality of submitted articles.Authors are responsible for obtaining permission for the reproduction of all graphic material included in articles.Societat Catalana de Matemàtiques declines all liability for the possible infringement of intellectual property rights by authors.The contents published in the journal, unless otherwise stated in the text or in the graphic material, are subject to a Creative Commons Attribution-NonCommercial-NoDerivs (by-nc-nd) 3.0 Spain licence, the complete text of which may be found at https://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en. Consequently, the general public is authorised to reproduce, distribute and communicate the work, provided that its authorship and the body publishing it are acknowledged, and that no commercial use and no derivative works are made of it.The journal Butlletí de la Societat Catalana de Matemàtiques is not responsible for the ideas and opinions expressed by the authors of the published articles.