Models matemàtics en dinàmica de poblacions Authors Carles Barril Basil Silvia Cuadrado Gavilán Jordi Ripoll Misse Abstract Population dynamics studies the evolution of size and composition of populations. In this article we present a compilation of the main mathematical models describing the dynamics of biological populations. We start with a historical introduction to the subject showing different problems in ecology, demography and epidemiology, as well as the tools and mathematical techniques used. Then we describe a new formulation in terms of delay equations that establishes a thorough general framework for the mathematical modeling of population Dynamics. Downloads Text complet (Català) Published 2019-01-25 How to Cite Barril Basil, C., Cuadrado Gavilán, S., & Ripoll Misse, J. (2019). Models matemàtics en dinàmica de poblacions. Butlletí De La Societat Catalana De Matemàtiques, 33(2), 87–209. Retrieved from https://revistes.iec.cat/index.php/BSCM/article/view/101608.003 More Citation Formats ACM ACS APA ABNT Chicago Harvard IEEE MLA Turabian Vancouver Download Citation Endnote/Zotero/Mendeley (RIS) BibTeX Issue Vol. 33 No. 2 (2018) Section Articles License The intellectual property of articles belongs to the respective authors.On submitting articles for publication to the journal Butlletí de la Societat Catalana de Matemàtiques, authors accept the following terms:Authors assign to Societat Catalana de Matemàtiques (a subsidiary of Institut d’Estudis Catalans) the rights of reproduction, communication to the public and distribution of the articles submitted for publication to Butlletí de la Societat Catalana de Matemàtiques.Authors answer to Societat Catalana de Matemàtiques for the authorship and originality of submitted articles.Authors are responsible for obtaining permission for the reproduction of all graphic material included in articles.Societat Catalana de Matemàtiques declines all liability for the possible infringement of intellectual property rights by authors.The contents published in the journal, unless otherwise stated in the text or in the graphic material, are subject to a Creative Commons Attribution-NonCommercial-NoDerivs (by-nc-nd) 3.0 Spain licence, the complete text of which may be found at https://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en. Consequently, the general public is authorised to reproduce, distribute and communicate the work, provided that its authorship and the body publishing it are acknowledged, and that no commercial use and no derivative works are made of it.The journal Butlletí de la Societat Catalana de Matemàtiques is not responsible for the ideas and opinions expressed by the authors of the published articles.