Poisson cohomology: old and new
Keywords:
Poisson cohomology, bm-symplectic geometry, deformation quantization, deformation theoryAbstract
Les varietats de Poisson tenen naturalment associat un complex de cocadenes, la cohomologia del qual es diu cohomologia de Poisson. En aquest treball estenem les tècniques de Guillemin, Miranda i Pires per calcular la cohomologia de Poisson de varietats bm-Poisson. La cohomologia resultant té dimensió infinita i ve parametritzada per la foliació simplèctica del lloc singular Z. El fet que puguem mesurar la diferència entre la cohomologia de Poisson i la cohomologia de l’algebroide subjacent obre una porta a l’estudi de la cohomologia de Poisson de varietats més generals.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
- Authors assign to Societat Catalana de Matemàtiques (a subsidiary of Institut d’Estudis Catalans) the rights of reproduction, communication to the public and distribution of the articles submitted for publication to Reports@SCM.
- Authors answer to Societat Catalana de Matemàtiques for the authorship and originality of submitted articles.
- Authors are responsible for obtaining permission for the reproduction of all graphic material included in articles.
- Societat Catalana de Matemàtiques declines all liability for the possible infringement of intellectual property rights by authors.
- The contents published in the journal, unless otherwise stated in the text or in the graphic material, are subject to a Creative Commons Attribution-NonCommercial-NoDerivs (by-nc-nd) 3.0 Spain licence, the complete text of which may be found at https://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en. Consequently, the general public is authorised to reproduce, distribute and communicate the work, provided that its authorship and the body publishing it are acknowledged, and that no commercial use and no derivative works are made of it.
- The journal Reports@SCM is not responsible for the ideas and opinions expressed by the authors of the published articles.