Counting subgroups using Stallings automata and generalisations Authors Paloma López Larios Universitat Politècnica de Catalunya Keywords: Stallings automata, enriched automata, finite index subgroup Abstract El problema de comptar els subgrups d’índex finit del grup lliure va ser abordat el 1949 per Marshall Hall, que va proporcionar una formula recursiva per al nombre de subgrups d’un índex finit donat en un grup lliure de rang finit. Aquest treball proporciona una prova del resultat de Hall utilitzant la teoria dels autòmats de Stallings. A més, veurem com obtenir una fórmula similar en el cas dels grups lliure per lliure-abelians, fent servir una generalització de la teoria dels autòmats de Stallings per a la família de grups lliure per lliure-abelians. Downloads Download data is not yet available. Downloads PDF Published 2024-01-26 How to Cite López Larios, P. (2024). Counting subgroups using Stallings automata and generalisations. Reports@SCM, 8(1), 57–58. Retrieved from https://revistes.iec.cat/index.php/reports/article/view/151068 More Citation Formats ACM ACS APA ABNT Chicago Harvard IEEE MLA Turabian Vancouver Download Citation Endnote/Zotero/Mendeley (RIS) BibTeX Issue Vol. 8 No. 1 (2023) Section Extended Abstracts License The intellectual property of articles belongs to the respective authors.On submitting articles for publication to the journal Reports@SCM, authors accept the following terms:Authors assign to Societat Catalana de Matemàtiques (a subsidiary of Institut d’Estudis Catalans) the rights of reproduction, communication to the public and distribution of the articles submitted for publication to Reports@SCM.Authors answer to Societat Catalana de Matemàtiques for the authorship and originality of submitted articles.Authors are responsible for obtaining permission for the reproduction of all graphic material included in articles.Societat Catalana de Matemàtiques declines all liability for the possible infringement of intellectual property rights by authors.The contents published in the journal, unless otherwise stated in the text or in the graphic material, are subject to a Creative Commons Attribution-NonCommercial-NoDerivs (by-nc-nd) 3.0 Spain licence, the complete text of which may be found at https://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en. Consequently, the general public is authorised to reproduce, distribute and communicate the work, provided that its authorship and the body publishing it are acknowledged, and that no commercial use and no derivative works are made of it.The journal Reports@SCM is not responsible for the ideas and opinions expressed by the authors of the published articles.