Survey on optimal isosystolic inequalities on the real projective plane
Paraules clau:
real projective plane, systole, isosystolic inequality, Riemannian metric, Finsler metric, Busemann–Hausdorff area, Holmes–Thompson area.Resum
Es revisen totes les desigualtats isosistòliques òptimes conegudes al pla projectiu real RP2, comparant-les amb el cas del 2-tor T2. Primer s’introdueixen nocions bàsiques de mètriques de Finsler. Després s’enuncien totes les desigualtats isosistòliques conegudes pel cas reversible i se’n dona la idea de prova. Finalment es tracten les desigualtats òptimes pel cas no-reversible. Actualment es coneixen totes les desigualtats òptimes per T2, tot i que no és així per RP2. S’hi presenten alguns petits progressos i arguments a favor de la desigualtat conjecturada en el cas encara obert.Descàrregues
Descàrregues
Com citar
Lejarza Alonso, U. (2024). Survey on optimal isosystolic inequalities on the real projective plane. Reports@SCM, 9(1), 21–30. Retrieved from https://revistes.iec.cat/index.php/reports/article/view/154338
Número
Secció
Articles
Llicència
The intellectual property of articles belongs to the respective authors.
On submitting articles for publication to the journal Reports@SCM, authors accept the following terms:
- Authors assign to Societat Catalana de Matemàtiques (a subsidiary of Institut d’Estudis Catalans) the rights of reproduction, communication to the public and distribution of the articles submitted for publication to Reports@SCM.
- Authors answer to Societat Catalana de Matemàtiques for the authorship and originality of submitted articles.
- Authors are responsible for obtaining permission for the reproduction of all graphic material included in articles.
- Societat Catalana de Matemàtiques declines all liability for the possible infringement of intellectual property rights by authors.
- The contents published in the journal, unless otherwise stated in the text or in the graphic material, are subject to a Creative Commons Attribution-NonCommercial-NoDerivs (by-nc-nd) 3.0 Spain licence, the complete text of which may be found at https://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en. Consequently, the general public is authorised to reproduce, distribute and communicate the work, provided that its authorship and the body publishing it are acknowledged, and that no commercial use and no derivative works are made of it.
- The journal Reports@SCM is not responsible for the ideas and opinions expressed by the authors of the published articles.