Maximal values for the simultaneous number of null components of a vector and its Fourier transform Autors/ores Alberto Debernardi Pinos Centre de Recerca Matemàtica (CRM) Paraules clau: Uncertainty principle, Fourier matrix, Fourier submatrix, DFT Resum Motivated by the uncertainty principle, the purpose of this work is to find the maximal value of simultaneous number of null components of a vector and its discrete Fourier transform. In other words if we denote W and Z the number of null components of a vector x and its Fourier transform, respectively, the uncertainty principle ensures that W and Z are inversely proportional. We study the best possible balance between those two numbers. Descàrregues Les dades de descàrrega encara no estan disponibles. Biografia de l'autor/a Alberto Debernardi Pinos, Centre de Recerca Matemàtica (CRM) PhD. student at Harmonic Analysis and Approximation Theory group of Centre de Recerca Matemàtica (CRM). Descàrregues PDF (English) Publicat 2016-04-19 Com citar Pinos, A. D. (2016). Maximal values for the simultaneous number of null components of a vector and its Fourier transform. Reports@SCM, 2(1), 1–10. Retrieved from https://revistes.iec.cat/index.php/reports/article/view/136568 Més formats de citació ACM ACS APA ABNT Chicago Harvard IEEE MLA Turabian Vancouver Descarregar citació Endnote/Zotero/Mendeley (RIS) BibTeX Número Vol. 2 Núm. 1 (2016) Secció Articles Llicència The intellectual property of articles belongs to the respective authors.On submitting articles for publication to the journal Reports@SCM, authors accept the following terms:Authors assign to Societat Catalana de Matemàtiques (a subsidiary of Institut d’Estudis Catalans) the rights of reproduction, communication to the public and distribution of the articles submitted for publication to Reports@SCM.Authors answer to Societat Catalana de Matemàtiques for the authorship and originality of submitted articles.Authors are responsible for obtaining permission for the reproduction of all graphic material included in articles.Societat Catalana de Matemàtiques declines all liability for the possible infringement of intellectual property rights by authors.The contents published in the journal, unless otherwise stated in the text or in the graphic material, are subject to a Creative Commons Attribution-NonCommercial-NoDerivs (by-nc-nd) 3.0 Spain licence, the complete text of which may be found at https://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en. Consequently, the general public is authorised to reproduce, distribute and communicate the work, provided that its authorship and the body publishing it are acknowledged, and that no commercial use and no derivative works are made of it.The journal Reports@SCM is not responsible for the ideas and opinions expressed by the authors of the published articles.