
AN ELECTRONIC JOURNAL OF THE

SOCIETAT CATALANA DE MATEMÀTIQUES
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En aquest article, presentem la geometria simplèctica i de Poisson des de la

mecànica hamiltoniana. Després introdüım els algebroides de Lie simplèctics,

objectes al mig de la geometria simplèctica i de Poisson. Posteriorment, recordem

la noció de reducció simplèctica en presència d’una aplicació moment. Com a

aplicació d’aquesta construcció, descrivim els espais de fase de part́ıcules carregades

sota la presència de camps de Yang–Mills. Finalment, introdüım un anàleg singular

d’aquesta construcció i donem exemples f́ısics.

Abstract (ENG)
In this article, we present symplectic and Poisson geometry from the perspective of

Hamiltonian mechanics. We then introduce symplectic Lie algebroids, objects which

lie between symplectic and Poisson manifolds. Afterwards, we recall the notion of

symplectic reduction under the existence of a moment map. As an application of

this construction, we describe the phase space of a charged particle interacting with

a Yang–Mills field. Finally, we introduce a singular analogue of this construction

and provide physical examples.
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A promenade through singular symplectic geometry

1. Introduction

Classical mechanics was inaugurated by the works of Isaac Newton. After his contribution, different ap-
proaches to write Newton’s equations of motion were developed, commonly with the goal of improving
certain aspects of the previous formalism. In Hamiltonian mechanics, the equations of motion are a system
of first order ordinary differential equations, known as Hamilton’s equations. This feature makes easier
discussing qualitative aspects of solutions from the perspective of dynamical systems. Moreover, the dual
behavior of symmetries and conserved quantities, originally established by Emmy Noether for Lagrangian
systems, becomes transparent in the Hamiltonian formalism.

Symplectic geometry can be regarded as an abstraction of Hamiltonian dynamics for smooth manifolds.
Poisson geometry is a further generalization of the symplectic setting, where the relevant structure is
the Poisson bracket defining the evolution of observables along the dynamics of the system. As we will
see, Poisson structures vastly generalize symplectic structures and, consequently, many results from the
symplectic category fail to be transferred to Poisson manifolds. Symplectic Lie algebroids define Poisson
structures which, although not arising from a symplectic form, have a very close behavior to them. In
physics, these objects allow to describe physical systems with degenerate or constrained dynamics. In
mathematics, they have proved to be the adequate language to establish results for a class of Poisson
structures.

New discoveries in particle physics during the XX century posed the problem of incorporating the weak
and strong forces into mechanics. The satisfactory formulation was proposed by Yang and Mills, and is
nowadays known under the name of gauge theory.1 The equations describing the motion of a charged
particle under the presence of a Yang–Mills field are a generalization of Lorentz’s force equation, and are
known as Wong’s equations. Sternberg showed how Wong’s equations fit into the Hamiltonian formalism of
mechanics. Weinstein additionally proved that the phase space constructed by Sternberg could be realized
as the reduction of a universal space for particles interacting with Yang–Mills fields.

The goal of this article is to fill the picture introduced in this section. In Section 2 we recall the funda-
mentals of symplectic and Poisson geometry from the Hamiltonian formalism of mechanics. In Section 3 we
introduce Lie algebroids and E -symplectic manifolds as objects between symplectic and Poisson structures.
We will additionally give examples of interest where they have been fruitfully applied. In Section 4 we
remember the interplay between conserved quantities and symmetries, codified in the moment map of a
Hamiltonian action. The presence of symmetries allows for elimination of degrees of freedom, a procedure
formalized by the reduction theorem of Marsden and Weinstein. We present Sternberg’s and Weinstein’s
constructions, and show how they have been extended to the setting of E -symplectic manifolds.

2. Symplectic and Poisson geometry

2.1 Symplectic geometry

Symplectic geometry can be considered an abstraction of the Hamiltonian formulation of classical me-
chanics. In this formalism, the equations of motion in the Euclidean space R2n, described in terms of

1In mathematics, gauge theories refer to the study of connections in vector and principal bundles. The name of Yang–Mills
theories is reserved to the study of solutions to the Yang–Mills equations.
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coordinates pi , qi , can be recovered from a function H ∈ C∞(R2n), called the Hamiltonian, following
Hamilton’s equations of motion:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (1)

The previous set of equations can be compactly written using matrix notation as XH = J · ∇f , where J is
the standard skew-symmetric matrix. Common choices in physics for the Hamiltonian are energy functions
of the form H = 1

2m

∑
p2i + V (q) for some smooth function V ∈ C∞(R2n), called the potential of the

system.

In many examples, as in systems with constraints, it is better to work directly in the setting of dif-
ferentiable manifolds. To write the previous set of equations in an abstract manifold, however, we need
to choose additional data relating the Hamiltonian vector field XH and the differential dH. Equation (1)
suggests that we should choose a skew-symmetric and non-degenerate tensor ω ∈ Ω2(M). For many results
to hold we have to additionally impose the form ω to be closed. While there is good geometric motivation
behind this requirement, we do not have the space to delve into this matter.

Definition 2.1. Let M be a smooth manifold. A non-degenerate, closed two-form ω ∈ Ω2(M) is called a
symplectic form. We call any such pair (M,ω) a symplectic manifold.

Following the previous analogy between ω and the matrix J, Hamilton’s equations of motion (1) should
be written in this new language as

ιXH
ω = −dH.

There is no apparent reason to believe this expression should be related in general to equations (1). It is a
theorem of Darboux that this is, indeed, the case. More precisely, we have the following:

Theorem 2.2 (Darboux). Let (M,ω) be a symplectic manifold. For every point p ∈ M there exists a
chart φ : U ⊂ Rn → M centered at p with coordinates qi , pj such that

φ∗ω =
n∑

i=1

dqi ∧ dpi .

This result is very powerful because it shows that symplectic geometry has no local invariants. Conse-
quently, all interesting information in symplectic manifolds has to be of topological/global nature.

2.2 Poisson geometry

Poisson brackets were originally introduced to study the evolution of observables, i.e., smooth functions,
along the Hamiltonian dynamics. In more mathematical terms, if we define the Poisson bracket of H and f
to be the derivative of f along the flow of XH , Hamilton’s equations (1) directly show

{H, f } =
n∑

i=1

∂H

∂pi

∂f

∂qi
− ∂H

∂qi

∂f

∂pi
. (2)

In the more general setting of symplectic geometry there exists an analogue generalization of the Poisson
bracket given by the formula

{f , g} = ω(Xf ,Xg ). (3)
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Poisson showed that his eponymous bracket (2) is linear in both arguments, skew-symmetric, satisfies
Leibniz’s rule and Jacobi’s identity holds:

{f , {g , h}}+ {g , {h, f }}+ {h, {f , g}} = 0.

Even though any bracket arising from (3) satisfies these conditions, there are brackets fulfilling these
properties which cannot be defined in this way. A trivial example is the Poisson bracket {f , g} = 0 for
all f , g ∈ C∞(M). The systematic study of these objects is the branch of Poisson geometry.

Definition 2.3. A Poisson bracket on a smooth manifold M is a bilinear, skew-symmetric operation
{·, ·} : C∞(M)× C∞(M) → C∞(M) satisfying Leibniz’s rule in each argument and Jacobi’s identity.

There is an alternative and useful characterization of Poisson brackets. Given any bracket {·,·}: C∞(M)×
C∞(M) → C∞(M) satisfying Leibniz’s rule and linearity in each variable, we can recover its action on any
functions f , g ∈ C∞(M) as the contraction of a two-tensor field Π ∈ T 2M with the differentials df , dg .
Moreover, because the Poisson bracket is skew-symmetric, there exists a unique bivector field Π ∈ X2(M)
representing the bracket {·, ·} in the sense that

{f , g} = ⟨df ∧ dg , Π⟩

for any smooth functions f , g ∈ C∞(M). Jacobi’s identity, however, does not hold for general bivector
fields. It turns out to be equivalent the integrability condition J = [Π,Π] = 0. The trivector field J , up
to a factor, is appropriately called the Jacobiator, and the bracket [·, ·] is an extension of the Lie bracket
of vector fields to the space of all multivector fields called Schouten–Nijenhuis bracket.

Given the great generality of these structures, there is no local normal form for Poisson structures
similar to Darboux’s Theorem 2.2. The closest analogue is the following result due to Weinstein.

Theorem 2.4 (Weinstein [15]). Let (M, Π) be a Poisson manifold. For every point p ∈ M there exists a
chart φ : U ⊆ M → Rn with coordinates qi , pj , rk such that

φ∗Π =
k∑

i=1

∂

∂qi
∧ ∂

∂pi
+

n−2k∑
i ,j=1

fij(rl)
∂

∂ri
∧ ∂

∂rj
.

Moreover, the functions fij are skew-symmetric and vanish at 0.

This local structure theorem is commonly called the splitting theorem because it states that, locally,
every Poisson manifold splits as the direct product of a symplectic manifold and a Poisson manifold with
vanishing Poisson structure at the origin. Observe this transverse Poisson structure measures the difference
of a Poisson manifold from being symplectic.

We would like to highlight two immediate consequences from Weinstein’s theorem. Firstly, the splitting
shows that any Poisson manifold admits a foliation by symplectic leaves, called the symplectic foliation of
the manifold. This shows that part of the Poisson structure can be encoded in the symplectic structures
of the leaves. Secondly, there is a well-defined notion of transverse Poisson structure. In contrast with the
symplectic realm, Poisson manifolds do have local invariants. As such, their study is much more complicated.
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3. Singular symplectic geometry

We have seen that the class of symplectic manifolds fits very naturally within the class of Poisson manifolds.
The class of Poisson manifolds is, however, much bigger and wilder than that of symplectic manifolds. As
such, there are some interesting and nice results in the symplectic category that do not hold in Poisson
geometry. One instance of this phenomenon is hinted in the difference between Darboux’s Theorem 2.2
and Weinstein’s Theorem 2.4.

There are many specific examples of Poisson manifolds which, although not being symplectic, can be
understood in a symplectic flavour if we are willing to work with singularities. Take as an example the
simplest degenerate Poisson structure with its dual form,

Π = z
∂

∂z
∧ ∂

∂t
+

n∑
i=2

∂

∂xi
∧ ∂

∂yi
,

ω =
dz

z
∧ dt +

n∑
i=2

dxi ∧ dyi .

The form ω is clearly not a symplectic form, because it is not even well-defined as a smooth differential
form. It becomes a symplectic form, in some sense, if we restrict its domain to the space of vector fields
tangent to the hypersurface {z = 0}.

We can informally call ω a singular symplectic form. The objective of this section is to elevate this idea
to a rigorous statement. We begin by defining the main objects of the discussion.

Definition 3.1. A Lie algebroid is a vector bundle π : A → M together with a vector bundle map ρ : A →
TM covering the identity and equipped with a Lie bracket [·, ·]A on the space of sections ΓA. Moreover,
the bracket satisfies, for any X ,Y ∈ ΓA and f ∈ C∞(M), the following compatibility conditions:

[X , fY ]A = f [X ,Y ]A + Lρ(X )f · Y , (5a)

ρ([X ,Y ]A) = [ρ(X ), ρ(Y )]. (5b)

In equation (5a), the operator L denotes the Lie derivative of a function along a vector field.

Equation (5a) is a generalized Leibniz’s identity for the bracket. Equation (5b) turns out to be redundant,
as it can be deduced from (5a). We have chosen to explicitly state it because it will be relevant for upcoming
discussions.

Let us take a brief detour and precisely describe how these objects arise in the description of systems
with singularities. We will present examples arising from physics where all the following assumptions are
satisfied. Consider that the equations of motion of our system can be described in terms of a C∞ sub-
sheaf of vector fields F ⊆ X. Furthermore, assume the sheaf is locally finitely generated, that is, for any
point p ∈ M there is an open set U containing p and sections X1, ... ,Xm ∈ FU such that their restriction
to any open set V ⊆ U generates FV . We can make two additional assumptions, each of which gives rise
to well-known objects in differential geometry.

• If we additionally assume the integrability condition [F ,F ] = F , the sheaf F defines a singular
foliation in the sense of Androulidakis and Skandalis. These objects can be integrated to give standard
singular foliations, or foliations in the sense of Stefan and Sussman.
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• If the sheaf is not only locally finitely generated but also locally free, it is a theorem of Serre [11] in
the algebraic setting and Swan [13] in the continuous case shows the sheaf F can be recovered as
the sheaf of sections of a vector bundle E .

If both assumptions are simultaneously made, we get projective foliations or Debord foliations. If E is a
representing vector bundle for F in the sense that F = ΓE , we get a natural map of vector bundles ρ : E →
TM given by the evaluation of a section at a point. This map is called the anchor, and is injective in an
open and dense subset U ⊆ M, i.e., generically injective. The integrability condition [F ,F ] ⊆ F lifts to a
bracket in the space of sections ΓE . One can easily check that the compatibility conditions (5a) and (5b)
are satisfied and, thus, any such object is an instance of a Lie algebroid.

Not all Lie algebroids arise this way as, in general, the anchor map ρ : A → TM is not generically
injective. The class of algebroids previously presented will be relevant in upcoming sections, so we will give
them a proper name.

Definition 3.2. Let M be a smooth manifold. An E-structure is the choice of a Debord foliation F ⊆ X
or, equivalently, a vector bundle π : E → M with a generically injective map ρ : E → TM. We call the
pair (E ,M) an E-manifold.

This construction shows that we can consider Lie algebroids, at least psychologically, as a replace-
ment of the standard tangent bundle TM. As such, we can consider the dual bundle A∗ and its exterior
powers

∧k A∗. Sections of these bundles are called, by analogy with the standard setting, k-differential
A-forms. The space of all sections is written Ωk

A(M). The Lie bracket [·, ·]A induces an exterior differential
in the spaces Ωk

A(M) following the standard Koszul formula,

dAω(X0, ... ,Xk) =
k∑

i=0

(−1)iLρ(Xi )ω(X0, ... , X̂i , ... ,Xk)

+
∑

0⩽i<j⩽k

(−1)i+jω([Xi ,Xj ],X0, ... , X̂i , ... , X̂j , ... ,Xk).

In the previous formula, an argument with a hat implies it has been suppressed from the collection of
inputs. A routine verification shows d2A = 0. The cohomology spaces of the complex of A-forms are called
Lie algebroid cohomology groups.

With the notion of differential forms and exterior calculus for systems with constraints, we can define
a symplectic form mimicking the standard definition in classical differential geometry.

Definition 3.3. Let π : A → M be a Lie algebroid. A symplectic form on A is a two form ω ∈ Ω2
A(M) which

is closed and non-degenerate. We call the pair (A,ω) a symplectic Lie algebroid. Similarly, if π : E → M
is an E -manifold, we call the pair (E ,ω) an E-symplectic manifold.

In this setting, the non-degeneracy condition amounts to requiring the vector bundle morphism

ω♭ : A −→ A∗

X 7−→ ιXω

to be an isomorphism. Its inverse map is written ω♯ : A∗ → A. As a consequence, we can define the
Hamiltonian vector field associated to a function H as the unique solution to the equation

ιXH
ω = −ρ∨dH.

In the previous equation, the map ρ∨ : T∗M → A∗ denotes the adjoint of the anchor map ρ : A → TM.
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We motivated the construction of Lie algebroids and symplectic forms on them to study Poisson
structures with certain types of singularities. Any symplectic Lie algebroid indeed defines a Poisson bracket
as

{f , g} = ω(Xf ,Xg ).

This mapping is clearly bilinear, skew-symmetric, and satisfies Leibniz’s identity. Jacobi’s identity is not as
evident but it is a consequence of the closedness of ω as a singular symplectic form.

Before concluding this section, let us briefly discuss two different examples of E -manifolds which have
found success in Poisson geometry.

We begin by describing b-symplectic manifolds. In this case, the sheaf of vector fields considered is
taken to be the sheaf of tangent vectors to an embedded hypersurface Z ⊆ M. The Lie algebroid obtained
is called the b-tangent bundle. It was originally considered by Melrose [5] in order to generalize the index
theorem to manifolds with boundary. The symplectic geometry of b-manifolds has been extensively studied
and described by Guillemin, Miranda, and Pires [2]. The school of Miranda has done remarkable work in
studying the interplay of b-symplectic geometry with integrable systems, geometric quantization, KAM
theory, and many more.

These objects are generalized by bm-symplectic manifolds. The sheaf of vector fields into consideration
is once again the sheaf of all fields tangent to a fixed hypersurface Z , but now we fix with degree of
tangency to be at least m. The definition of these structures is due to Scott [10], where some technical
details concerning additional data are discussed. This singular symplectic models have found applications
in studying the topology of escape orbits in the planar, restricted, circular three body problem [7].

4. Reduction by symmetries and minimal coupling

One of the central ideas in the study of physical systems is that of symmetries. In the presence of a
group of transformations that leaves the motion of the system unchanged, one can reduce the number of
parameters by an appropriate choice of coordinates (or frames of reference). A remarkable instance of this
phenomenon is Euler’s solution to the two-body problem. The invariance by linear translations allows the
origin of the frame of reference to be taken in the center of mass, while the invariance by rotations implies
the confinement of both bodies to a plane and one additional constraint.

These invariance by transformation groups of the system can be dually read as conservation laws.
The invariance by linear transformations is equivalent to the conservation of linear momentum, while the
invariance by rotations is equivalent to the conservation of angular momentum. The observation that this
phenomenon is a general feature is due to Emmy Noether and, as such, the conserved quantities obtained
from a symmetry are called Noether charges.

This correspondence is transparent in the symplectic formulation of classical mechanics. To describe
it, we will need to define what does it mean for an action of a Lie group G on (M,ω) to be Hamiltonian.
Intuitively, we would like the fundamental vector fields of the action to be Hamiltonian: in other words, we
are asking for a lift µ• of the fundamental vector field map •# in the following commutative diagram:

0 R C∞(M) XHam(M) 0

g

X•

µ• •# (6)
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Here, we have tacitly assumed M is connected so that H0(M) = R. There always exists such a lift at
the level of vector spaces: as X• : C∞(M) → XHam(M) is surjective, we can choose the preimage of a set
of generators and extend by linearity.

There are obstructions for the map µ• : g → C∞(M) to be a morphism of Lie algebras, where we endow
C∞(M) with the Poisson bracket as Lie bracket. The failure to have a Lie algebra morphism is measured
by the map

c(X ,Y ) = {µX ,µY } − µ[X ,Y ].

As the projection of this element to XHam(M) vanishes by the commutativity of the diagram, we can identify
the image c(X ,Y ) with an element in the kernel kerX• ≃ R. This map thus determines an element in
the Chevalley–Eilenberg complex, c ∈ C(g;R). The map c is closed, and hence determines a class in the
cohomology group H2(g;R). The lift µ• can be chosen to be a Lie algebra morphism if and only if [c] = 0.
Moreover, all possible such choices are parametrized by elements of the group H1(g;R).

Assuming some conditions on the Lie group G ,2 there is a uniquely determined lift which we call the
comoment map. By construction, it intertwines the adjoint action in g with the induced pullback action
in C∞(M). As the name hints, however, it is better to think of the comoment map in terms of a dual
object called the moment map.

Definition 4.1. Let (M,ω) be a symplectic manifold and let G be a Lie group acting on M. We say the
action is Hamiltonian if there exists a map µ : M → g∗, called the moment map, satisfying the following
conditions:

ιX#ωp = −d⟨µ(p),X ⟩ for all X ∈ g, p ∈ M, (7a)

µ ◦ ρg = Ad∗g ◦µ for all g ∈ G . (7b)

We call any such triple (M,ω,µ) a Hamiltonian G-space.

Equation (7a) is reminiscent of the equivariance of the comoment map. Equation (7b) is a direct
consequence of the fact that the fundamental vector fields of g act in a Hamiltonian fashion: indeed, all
we are saying is that ⟨µ,X ⟩ is the Hamiltonian function of X# or, following (6), the comoment map µX .

Let us assume now we are given a Hamiltonian G -space (M,ω,µ) with a G -invariant Hamiltonian H
and equations of motion determined by XH . Assume H is an invariant function under the action of G . We
will also assume the group G is connected. This technical condition ensures that any Hamiltonian action
is also a symplectic action, that is, preserves the form ω. Two consequences arise from these facts.

Firstly, observe XH is G -invariant. We recall the symplectic form ω is G -invariant because we assume
G is connected. Because the Hamiltonian H is G -invariant, we have

ιρg ·XH
ω = ρ∗g−1ιXH

ρ∗gω = ρ∗g−1dH = dH = ιXH
ω.

As a consequence, we deduce XH = ρg · XH .

Secondly, assume we are given a regular value α ∈ g∗ of µ. By equivariance, every other value β ∈ Oα

is regular, and thus the preimage Mα = µ−1(Oα) is a submanifold. By invariance of H we have LX#H = 0.
The definition of moment map implies now

0 = LXH
µX = ⟨dµX ,XH⟩ = ⟨ιXH

µ,X ⟩.
2For example, if G is semisimple, we know by Whitehead’s lemmas that H1(g;R) = H2(g;R) = 0. The semisimplicity

assumption is automatically satisfied if G is a compact group.
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As this equality holds for all X ∈ g, we have ⟨dµ,XH⟩ = 0. This result implies XH is tangent to the level
sets of µ and, by G -invariance, to the preimages of the coadjoint orbits.

Thus, the dynamics defined by XH can be restricted to the submanifold µ−1(Oα) and can be further
projected to the quotient manifold µ−1(Oα)/Gα, assuming technical conditions on the action of G .3

Marsden and Weinstein observed that this reduced space is once again a symplectic manifold, and hence
one can consider Hamiltonian dynamics with respect to the reduced symplectic structure.

Theorem 4.2 (Marsden–Weinstein [4]). Let (M,ω) be a symplectic manifold and assume G is a compact
Lie group acting on M with moment map µ : M → g∗. If α ∈ g∗ is a regular value of µ, then the
space µ−1(Oα)/Gα is a symplectic manifold with symplectic form ωred. Moreover, it is uniquely determined
by

i∗αω = π∗ωred.

4.1 The minimal coupling procedure

We will describe a procedure to construct the phase space of a charged particle interacting with a Yang–
Mills field. The presentation we take is essentially due to Sternberg [12]. Assume we are given a principal
G -bundle π : P → X over a symplectic manifold (X ,ω) and a Hamiltonian G -space (Q, Ω) with moment
map µ. We can construct a symplectic structure in the adjoint bundle P ×G Q by choosing a principal
connection η ∈ Ω1(X ; adP) in the following way. Sternberg shows the two-form d⟨µ, η⟩ + Ω in P × Q
descends to a well-defined and closed two-form Ωη ∈ Ω2(P ×G Q). Under a non-degeneracy assumption,
the manifold (P ×G Q,ω +Ωη) is symplectic and the previous construction is called the minimal coupling
procedure. The additional term Ωη is known in the literature as the magnetic term. If we take (Q, Ω) to
be a coadjoint orbit of an irreducible representation of a Lie group G , we obtain the classical phase spaces
of charged particles [12].

Sternberg mentions that, in the case where X = TM with its canonical symplectic form, the previous
non-degeneracy assumption is always satisfied. Weinstein went beyond this observation and proved Stern-
berg’s phase space can be obtained as the symplectic reduction of a universal phase space. The role of the
connection is made explicit in terms of an isomorphism between his construction and Sternberg’s. More
concretely, we can summarize Weinstein’s results in the following theorem.

Theorem 4.3 (Weinstein [14]). Let π : P → M be a principal G-bundle and let (Q, Ω) be a Hamiltonian
G-space with moment map µQ . Let P

# be the pullback bundle of π by the submersion T∗M → M.

Then, the space T∗P ×Q is a G-Hamiltonian space for the diagonal G-action with moment map4 µ =
µP + µQ . Any choice of connection in P induces a diffeomorphism µ−1(0) ≃ P# ×Q which, furthermore,
induces a diffeomorphism of the symplectic spaces µ−1(0)/G and P# ×G Q.

The symplectomorphism induced by this choice of connection is called the minimal coupling of the
system. Given a Hamiltonian in the base space, H ∈ C∞(T∗M), we can consider its pullback to either
space and get equivalent dynamics. The induced equations of motion are called Wong’s equations [8].

3Namely, freeness and properness. The latter is satisfied if G is a compact group, which we have enforced since the
construction of the moment map.

4In this formula, the moment map µP : T
∗P → g∗ is the natural moment map obtained for the cotangent lift of any

G -action to the cotangent bundle with the canonical symplectic form.
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There is an interesting interpretation of this construction by Montgomery [9]. The choice of a connection
yields the commutative diagram

P# ×G Q µ−1(0)/G

T∗M

Φ

π h∨

Here, the projection π is completely natural and is induced from the projection of the pullback bun-
dle π : P# → T∗M. The map h∨ is the dual of the horizontal lift h : TM → TP, completely determined
and equivalent to the choice of connection. Therefore, we have two different ways to understand Wong’s
equations of motion. In the space P# ×G Q, the Hamiltonian function does not get modified but the
symplectic structure absorbs the additional factor Ωη. In the universal model µ−1(0)/G , the symplectic
form is canonical but the Hamiltonian function gets twisted by the pullback under h∨.

4.2 The singular minimal coupling

The minimal coupling enables the study of classical particles interacting with Yang–Mills field in the
symplectic formulation. The extension of this construction to include systems modeled with E -manifolds
was proposed by Mir, Miranda, and Nicolás [6]. More concretely, one of the results proved is the following
analogous statement to Theorem 4.3.

Theorem 4.4 (Mir–Miranda–Nicolás [6]). Let π : P → M be a principal G-bundle over an E-manifold E →
M and let (Q, Ω) be a Hamiltonian G-space with moment map µQ . Let P# be the pullback bundle of π
by the submersion E ∗

M → M.

Then, the space E ∗
P × Q is a G-Hamiltonian space for the diagonal G-action with moment map µ =

µP + µQ . Any choice of connection in P induces a diffeomorphism µ−1(0) ≃ P# ×Q which, furthermore,
induces a diffeomorphism of the symplectic spaces µ−1(0)/G and P# ×G Q.

Throughout the rest of the section we will fix an E -manifold EM → M and a principal G -bundle P → M.
The proof of Theorem 4.4 follows essentially the same argument as Weinstein. The complication lies in
developing the machinery necessary to state and follow the original proof. Since we would like to extend
the singularities of our configuration space M to the bundles EM and P, we need a procedure to do so. The
fundamental notion is that of prolongation, which dates back at least to the works of de León, Marrero,
and Mart́ınez [1].

Definition 4.5. Assume f : N → M is a surjective submersion over a Lie algebroid A → M. The prolonga-
tion of A along f , written LfA, is the pullback bundle of the morphisms df : TN → TM and ρ : A → M.
As a set, it can be identified with

LfA = {(X ,Y ) ∈ A× TN | ρ(X ) = df (Y )}.

Throughout the rest of the section, we fix an E -manifold E → M. The prolongation of the dual
bundle E ∗

M → M, which can be thought as the singular tangent bundle of the cotangent bundle, carries
a natural Liouville form whose differential is symplectic [1]. Thus, the prolongation of E ∗

M is a symplectic
E -manifold, in strong resemblance to the cotangent bundle of a smooth manifold.
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Similarly, we consider the prolongation of the principal G -bundle P → M. Because EP → P has a
natural action of the Lie group G and the anchor map is injective on an open and dense subset, the action
on P lifts to an action on EP which factors through the standard tangent map. By duality, the action lifts
to the dual bundle E ∗

P and, moreover, it becomes Hamiltonian with respect to the canonical symplectic
structure. The fact that the action of the Lie group G automatically lifts to EP is only valid for E -manifolds.
If we want to establish similar results for symplectic Lie algebroids, stronger compatibility assumptions are
needed to define Hamiltonian group actions (see [3]).

The last ingredient in the proof of Theorem 4.4 is the notion of symplectic reduction in the singu-
lar setting. The authors rely on a version of the reduction theorem developed by Marrero, Padrón, and
Rodŕıguez-Olmos for symplectic Lie algebroids (Theorem 3.11 in [3]).

In [6] the authors consider some standard configuration spaces with singularities, such as the compact-
ification of a stationary black hole or a general bm-manifold, motivated by previous contributions in the
literature of celestial mechanics. Moreover, they explicitly compute Wong’s equations describing the motion
of a charged particle interacting with a Yang–Mills field.

5. Conclusions

Symplectic manifolds are fundamental objects in the geometric formulation of Hamiltonian dynamics.
These give rise to Poisson brackets, which measure the evolution of observables along the trajectories of
the system but are vastly more general. E -Symplectic manifolds lie between both worlds: even though they
define Poisson structures, their behavior is closer to symplectic forms. Moreover, they naturally encode
certain physical systems with constrained dynamics.

Theorem 4.4 extends the classical minimal coupling procedure to E -symplectic manifolds. In more
physical terms, it provides a Hamiltonian formulation of the equations of motion of particles under the
interaction with a Yang–Mills field for constrained systems. This result could open the door to study
the dynamics of such physical systems using geometric techniques. Indeed, in [7] the authors obtain a
b3-symplectic structure in the planar, restricted, circular three-body problem and, using a contact analogue
of the theory described here, discuss the existence of periodic orbits at infinity. No analogue result has been
established for charged particles.
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