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Resum (CAT)
La teoria de Bernstein–Sato ha esdevingut recentment un tema central a l’àlgebra

commutativa i la geometria algebraica, atès que constitueix una poderosa eina

per a classificar i quantificar singularitats en varietats algebraiques. En particular,

ha sorgit un gran interès per estendre la teoria a anells de caracteŕıstica positiva.

En aquest article, considerem una classe de polinomis, que denominem polinomis

linealment lliures de quadrats, i investiguem els seus invariants associats en el

context de la teoria de Bernstein–Sato.

Abstract (ENG)
Bernstein–Sato theory has recently emerged as a central topic in commutative al-

gebra and algebraic geometry, as it constitutes a powerful tool in classifying and

quantifying singularities of algebraic varieties. Notably, there has been a surge of in-

terest in extending this theory to the positive characteristic setting. In this work, we

consider a class of polynomials, which we call linearly square-free polynomials, and

investigate their associated invariants within the context of Bernstein–Sato theory.
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1. Introduction

A central challenge driving the development of algebraic geometry is the classification of algebraic varieties,
which includes the classification of the singularities of these varieties. One approach at tackling this problem
is to characterize singularities by attaching algebraic invariants.

A rich family of such invariants falls under the umbrella of the so-called Bernstein–Sato theory, whose
roots lie in the foundational works of Bernstein [2] and Sato [23]. We briefly outline their discovery. Denote
by DR|C the ring of C-linear differential operators on the polynomial ring R = C[x1, ... , xn] and let f be a
nonzero polynomial. Then there exist a nonzero differential operator δ(s) ∈ DR|C[s], and a non-constant
monic polynomial bf (s) ∈ C[s] satisfying the functional equation

δ(s) · f s+1 = bf (s) f
s , for s ∈ Z≥0.

The polynomial bf (s) is the Bernstein–Sato polynomial of f .

The Bernstein–Sato polynomial has been the focus of extensive research since it encodes the behavior
of the singularities of the hypersurface defined by f in Cn. To showcase this, suppose f vanishes at 0 ∈ Cn.
A well-known invariant from complex analysis is the log-canonical threshold of f at the origin, defined as

lct(f ) = sup

{
λ ∈ R>0

∣∣∣∣ ∫
U

1

|f |2λ
< ∞ for some neighborhood U of the origin

}
.

The log-canonical threshold is a rational number in the interval (0, 1]. The more singular f is, the smaller
the log-canonical threshold will be. Kollár proved that the log-canonical threshold of f is the smallest
root of bf (−s) [13]. It is known that the roots of bf (s) are rational and negative due to Malgrange and
Kashiwara [16, 12]. A number of invariants have originated around the Bernstein–Sato polynomial over the
years. Of special interest in birational geometry are multiplier ideals and jumping numbers (for instance,
see [15]).

In positive characteristic, Bernstein–Sato theory has a more recent development. Let us make an
overview of one of the main objects of study, namely, the test ideals. These were introduced by Hochster
and Huneke as an auxiliary tool in the context of tight closure theory [11], and afterwards related to the
multiplier ideals by Hara and Yoshida [8]. Blickle, Mustaţă and Smith gave an alternative but equivalent
definition of test ideals in [6], on which we base our study.

To fix ideas, let R be a regular ring of characteristic p > 0 and f a nonzero element. The test ideals
(cf. Definition 2.10) are a family {τ(f λ)}λ∈R≥0

of ideals of R indexed by the real numbers. For λ ≤ µ,

these satisfy τ(f λ) ⊇ τ(f µ), hence one obtains a descending chain of ideals in R. One can show that for a
fixed λ > 0, there exists ε > 0 such that τ(f λ) = τ(f µ) for all µ ∈ [λ,λ+ ε), i.e. the family is right semi-
continuous. On the contrary, there exist certain λ > 0 such that τ(Iλ−ε) ⊋ τ(Iλ) for any ε > 0, that is,
the chain of test ideals “jumps”. These jumping spots are named F -jumping numbers (cf. Definition 2.14),
and the smallest among them is the F -pure threshold, as introduced in [24]. Under finiteness hypotheses,
F -jumping numbers are known to be discrete and rational (see Theorem 3.1 of [6]). Needless to say, these
notions have been extended to non-principal ideals.

As the terminology suggests, the test ideals, F -jumping numbers and F -pure thresholds serve as charac-
teristic p > 0 analogues to the multiplier ideals, jumping numbers and log-canonical thresholds, respectively.
Remarkably, there is a deep and intricate relationship between these two theories. For instance, one can
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recover the log-canonical threshold from the F -pure threshold by letting p → ∞ (see Theorem 3.4 in [19]).
It is also known in several cases that the reduction modulo p of a multiplier ideal produces the corresponding
test ideal [20].

The F -pure threshold has been computed in a handful of cases. It is known, for instance, in the case
of elliptic curves, Calabi–Yau hypersurfaces, diagonal hypersurfaces and determinantal ideals, to name a
few [3, 4, 10, 17]. Among the few situations where test ideals have been fully characterized, there is the
case of determinantal ideals of maximal minors [9].

In general, finding F -jumping numbers and test ideals is a challenging problem, even in smooth ambient
spaces such as polynomial rings and with the aid of computational tools. To some extent, the aforementioned
known results rely on the favorable arithmetic and combinatorial properties of the objects involved. Without
these properties, very little can be said about F -invariants.

Our goal in this article is to compute the F -jumping numbers and test ideals for a new class of
polynomials, which we refer to as linearly square-free polynomials. These are polynomials whose monomials
are all square-free, meaning they are not divisible by any square of an indeterminate. In the process, we also
compute several other F -invariants useful for the theory, namely, the ν-invariants, Frobenius roots, and
Bernstein–Sato roots, which we will introduce in due course. Finally, we relate these computations to the
log-canonical threshold of linearly square-free polynomials in characteristic zero. This work originated from
the study of F -invariants for determinants of generic matrices of indeterminates in characteristic p > 0.
Subsequently, it was realized that the same ideas applied to linearly square-free polynomials.

Throughout, all rings considered will be commutative with unit.

2. Background

2.1 Frobenius powers and Frobenius roots

Let R be a ring of characteristic p > 0. We denote by F : R → R, f 7→ f p the Frobenius or p-th power
map. This is a ring endomorphism of R. For an integer e ≥ 0, we let F e : R → R, f 7→ f p

e
be the e-th

iterate of the Frobenius.

Definition 2.1. For an integer e ≥ 0, the e-th Frobenius power of an ideal I ⊆ R is

I [p
e ] = F e(I )R = (f p

e | f ∈ I ).

This is an ideal of R. In the case that I be generated by f1, ... , fn, one has

I [p
e ] = (f p

e

1 , ... , f p
e

n ).

Remark 2.2. When I is a principal ideal of R, say I = (f ), Frobenius powers and the usual powers coincide,

(f )[p
e ] = (f )p

e
.

A sort of converse operation to Frobenius powers are Frobenius roots. For principal ideals, Frobenius
roots were first introduced in [1] by Àlvarez-Montaner, Blickle and Lyubeznik, in order to study generators
of modules over rings of differential operators in positive characteristic. Afterwards, Frobenius roots were
generalized to the non-principal case by Blickle, Mustaţă and Smith in [6].
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Definition 2.3. For an integer e ≥ 0, the e-th Frobenius root of an ideal I ⊆ R is the smallest ideal J ⊆ R
in the sense of inclusion such that

I ⊆ J [p
e ].

We denote the e-th Frobenius root of the ideal I by I [1/p
e ]. For e = 0, we set I [1/p

e ] = I .

A celebrated theorem of Kunz states that a ring R of characteristic p > 0 is regular if and only if the
Frobenius F : R → R is a flat map [14]. Under the assumption of regularity, one can show that Frobenius
roots are well-defined. See, for instance, Lemma 2.3 of [6].

Remark 2.4. Let I1, I2 be ideals of R such that I1 ⊆ I2. Then one has

I1 ⊆ I2 ⊆ (I
[1/pe ]
2 )[p

e ].

Because I
[1/pe ]
1 is the smallest ideal with I1 ⊆ (I

[1/pe ]
1 )[p

e ], it follows that

I
[1/pe ]
1 ⊆ I

[1/pe ]
2 ,

hence Frobenius roots preserve ideal containments.

Remark 2.5. Let I , J be ideals of R and e ≥ 0 an integer. Then

I · J [1/pe ] ⊆ (I [p
e ]J)[1/p

e ].

Proposition 2.6 ([21, Lemma 2.3]). Let I , J be ideals of R and e ≥ 0 an integer. One has that I [1/p
e ] ⊆ J

if and only if I ⊆ J [p
e ].

We next describe a nice characterization of Frobenius roots in terms of generators, which will prove to
be computationally useful. To this end, we endow R with an exotic R-module structure.

Definition 2.7. For an integer e ≥ 0, define the R-module F e
∗R as follows. Its elements are denoted

by F e
∗ f , where f is in R. As an abelian group, F e

∗R is isomorphic to R, so addition is defined by

F e
∗ f + F e

∗ g = F e
∗ (f + g), for F e

∗ f ,F
e
∗ g ∈ F e

∗R.

The action of R on F e
∗R is defined by restricting scalars along the e-th iterate F e of the Frobenius, that is,

r · F e
∗ f = F e

∗ (r
pe f ), for r ∈ R, F e

∗ f ∈ F e
∗R.

Definition 2.8. A Noetherian ring R of characteristic p > 0 is an F -finite ring if F e
∗R is a finitely generated

R-module for some e ≥ 1 (equivalently, all e ≥ 1).

Proposition 2.9 ([1, Section 3], [6, Proposition 2.5]). Suppose that F e
∗R is a free R-module with ba-

sis ε1, ... , εn. Let I be an ideal of R generated by f1, ... , fm. For a generator fi , i = 1, ... ,m, write

F e
∗ fi = gi ,1F

e
∗ ε1 + · · ·+ gi ,nF

e
∗ εn, where gi ,1, ... , gi ,n ∈ R.

Then the e-th Frobenius root of I is

I [1/p
e ] = (gi ,j | i = 1, ... ,m, j = 1, ... , n).
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2.2 Test ideals and ν-invariants

From now on, let R be a regular F -finite ring of characteristic p > 0. For a real number x ∈ R, let ⌈x⌉ ∈ Z
denote the round-up of x , i.e. the least integer greater or equal than x .

As mentioned earlier, the test ideals are the characteristic p > 0 analogues of the multiplier ideals. We
adopt as a definition for the test ideal the characterization given in [6]:

Definition 2.10 ([6, Definition 2.9]). The test ideal of an ideal I ⊆ R with exponent λ ∈ R≥0 is

τ(Iλ) =
∞⋃
e=0

(I ⌈λp
e⌉)[1/p

e ].

Remark 2.11. It can be shown that the ideals on the right-hand side give an ascending chain in R,

(I ⌈λp⌉)[1/p] ⊆ (I ⌈λp
2⌉)[1/p

2] ⊆ · · · ⊆ (I ⌈λp
e⌉)[1/p

e ] ⊆ (I ⌈λp
e+1⌉)[1/p

e+1] ⊆ · · ·

(see Lemma 2.8 in [6]). Since R is a Noetherian ring, the chain eventually stabilizes:

τ(Iλ) = (I ⌈λp
e⌉)[1/p

e ], for some e ≫ 0.

Remark 2.12. Let 0 ≤ λ ≤ µ be real numbers. Because ⌈λpe⌉ ≤ ⌈µpe⌉, one has that

I ⌈λp
e⌉ ⊇ I ⌈µp

e⌉, for every e ≥ 1.

On the other hand, Remark 2.4 shows that Frobenius roots preserve inclusions, therefore

τ(Iλ) ⊇ τ(Iµ), whenever µ ≥ λ ≥ 0.

It follows from the remark above that test ideals give a descending chain of ideals of R. More explicitly,
given non-negative real numbers λ1 ≤ λ2 ≤ · · · ≤ λn ≤, one has that

τ(Iλ1) ⊇ τ(Iλ2) ⊇ · · · ⊇ τ(Iλn) ⊇ · · · .

Such chain of ideals can “jump”, i.e. the containments between test ideals may be strict. The results below
encode this behavior:

Theorem 2.13 ([19, Remark 2.12], [6, Corollary 2.16, Theorem 3.1]). Let I be an ideal of R.

(i) For each λ ≥ 0, there exists ε > 0 such that τ(Iλ) = τ(Iλ+ε). In particular, there exists λ > 0 small
enough such that τ(Iλ) = R.

(ii) There exist real numbers λ > 0 such that τ(Iλ−ε) ⊋ τ(Iλ) for all ε > 0.

Definition 2.14 ([24, Definition 2.1], [19], [6, Definition 2.17]). Let I be an ideal of R. A real number λ > 0
is an F -jumping number of I if

τ(Iλ−ε) ⊋ τ(Iλ), for every ε > 0.

The smallest F -jumping number is called the F -pure threshold of I , and denoted by fpt(I ), namely

fpt(I ) = sup{λ > 0 | τ(Iλ) = R}.
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F -jumping numbers were introduced under the name F -thresholds in [19], as an invariant to study the
jumping coefficients of the test ideals of Hara and Yoshida [8]. Afterwards, it was shown that the sets of
F -thresholds and F -jumping numbers are equal (see [6, Corollary 2.30]). On another note, one has the
following result relating the log-canonical threshold and the F -pure threshold:

Theorem 2.15 ([19, Theorem 3.4]). Let f be a polynomial with integer coefficients in C[x1, ... , xn]. For a
prime number p > 0, let fp denote the reduction modulo p of f in Fp[x1, ... , xn]. Then

lim
p→∞

fpt(fp) = lct(f ).

Another object closely related to the F -jumping numbers are the ν-invariants:

Definition 2.16 ([19]). Let I , J be ideals of R such that I ⊆ rad J, where rad J denotes the radical of J.
Fix an integer e ≥ 0. The ν-invariant of level e of I with respect to J is

νJI (p
e) = max{r ∈ Z | I r ̸⊆ J [p

e ]}.

Because I ⊆ rad J, this integer exists and is finite. The set ν•I (p
e) of ν-invariants of level e of I is the set

of integers of the form νJI (p
e) obtained as J ranges over the ideals containing I in its radical:

ν•I (p
e) = {νJI (pe) | J ⊆ R such that I ⊆ rad J}.

Remark 2.17. In view of Proposition 2.6, r ≥ 0 is the ν-invariant νJI (p
e) if and only if (I r )[1/p

e ] ̸⊆ J.

The ν-invariants were introduced precisely to study F -thresholds. In fact, the F -threshold cJ(I ) of I
with respect to J was defined in [19] as

cJ(I ) = lim
e→∞

νJI (p
e)

pe
.

Since F -thresholds and F -jumping numbers coincide when R is a regular ring, the ν-invariants are a powerful
tool for shedding light on test ideals.

In computing the ν-invariants of an ideal I , it is not evident how to choose an ideal J that contains I
in its radical. Instead, however, one can inspect the chain of ideals

· · · ⊆ (I r+1)[1/p
e ] ⊆ (I r )[1/p

e ] ⊆ · · · ⊆ (I 2)[1/p
e ] ⊆ I [1/p

e ] ⊆ R.

In some cases, the containments are, in fact, equalities. When they are not, the chain of ideals “jumps”. The
next proposition, together with Remark 2.17, shows that the spot where the chain jumps is a ν-invariant.

Proposition 2.18 ([21, Proposition 4.2]). The set of ν-invariants of level e ≥ 0 of an ideal I is

ν•I (p
e) = {r ≥ 0 | (I r+1)[1/p

e ] ̸= (I r )[1/p
e ]}.

2.3 Bernstein–Sato roots

The last algebraic invariants relevant to our discussion are the Bernstein–Sato roots. These are charac-
teristic p > 0 analogues to the roots of the Bernstein–Sato polynomial in characteristic zero, a concept
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Pedro López Sancha

that originated from Mustaţă’s work [18]. Mustaţă initiated the extension of Bernstein–Sato polynomials to
positive characteristic, an effort further advanced by Bitoun [5]. Due to the intricate nature of constructing
Bernstein–Sato roots, we will instead use the more straightforward characterization in terms of ν-invariants,
as provided by Quinlan-Gallego [21]. Before delving into this topic, we will briefly discuss p-adic limits and
integers.

The p-adic valuation on Z is the map vp : Z → Z≥0 defined by vp(0) = ∞ and

vp(n) = max {k ≥ 0 | pk divides n}, for n ̸= 0,

which naturally extends to a valuation vp : Q → Z≥0 by letting

vp
(a
b

)
= vp(a)− vp(b).

This induces the p-adic norm |·|p : Q → R, |x |p = p−vp(x), and in turn the p-adic metric dp : Q×Q → R,
dp(x , y) = p−vp(x−y). In this setting, the ring Qp of p-adic numbers is the completion of Q with respect
to the p-adic metric. The ring Zp of p-adic integers is the subring of Qp given by

Zp = {α ∈ Qp | |α|p ≤ 1}.

Because vp(n) ≥ 0 for every n ∈ Z, one has |n|p ≤ 1, therefore Z is contained in Zp. From the definition,
one also sees that Q is contained in Qp. A sequence (xn)

∞
n=0 ⊆ Q has p-adic limit α ∈ Qp if xn → α in

the p-adic metric. For more on p-adic numbers, we refer the interested reader to Section 7 in [21].

With this in mind, Bernstein–Sato roots are defined as follows:

Definition 2.19 ([21, Proposition 6.13], [22, Theorem IV.17]). Let I be an ideal of R. A p-adic integer α ∈
Zp is a Bernstein–Sato root of I if there exists a sequence (νe)

∞
e=0 ⊆ Z≥0 of ν-invariants of I , νe ∈ ν•I (p

e),
whose p-adic limit is α.

3. Linearly square-free polynomials

In this section we prove our main results, namely, the computation of Bernstein–Sato theory invariants for
linearly square-free polynomials in characteristic p > 0.

Definition 3.1. Let R = B[x1, ... , xn] be a polynomial ring over a commutative ring B. We say that a
polynomial in R is a linearly square-free polynomial if all its monomials are square-free.

Example 3.2. Let R = B[x11, ... , x1n, ... , xn1, ... , xnn] be a polynomial ring in n2 indeterminates. The
indeterminates may be assembled in an n × n generic matrix of indeterminates X = (xij). Then the
determinant of X ,

detX =
∑

σ∈Sym(n)

sgn(σ)x1σ(1) · · · xnσ(n),

is a linearly square-free polynomial.
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Example 3.3. Let X = (xij) be a 2n × 2n skew-symmetric matrix of indeterminates, that is, xij = −xji
for 1 ≤ i , j ≤ 2n. The Pfaffian of X is the polynomial

Pf X =
1

2nn!

∑
σ∈Sym(2n)

sgn(σ)
n∏

i=1

xσ(2i−1)σ(2i).

It can be shown that the Pfaffian satisfies (Pf X )2 = detX . Since no indeterminate appears twice in the
same monomial, the Pfaffian is linearly square-free.

Example 3.4. Let K be a field and W ⊆ KE be a realization of a matroid M, where E is a finite set
that forms a basis of KE . Then the configuration polynomial of W is linearly square-free (see [7]). These
polynomials have applications in physics.

The proposition below is a well-known fact that shows that F e
∗R has a particularly nice structure

provided R is a polynomial ring over a perfect field of characteristic p > 0. Recall that a field K of
characteristic p > 0 is perfect if the Frobenius F : K → K is an automorphism of K . This is tantamount
to every element of K having a pe-th root in K .

Proposition 3.5. Let R = K [x1, ... , xn] be a polynomial ring over a perfect field K of characteris-
tic Char(K ) = p > 0. For each integer e ≥ 0, one has that

F e
∗R ≃

⊕
0≤i1,...,in<pe

R F e
∗ x

i1
1 · · · x inn .

In consequence, the set {F e
∗ x

i1
1 · · · x inn | 0 ≤ i1, ... , in < pe} is a basis for F e

∗R. We refer to this as the
standard basis of F e

∗R.

We start by computing the Frobenius roots and the ν-invariants of linearly square-free polynomials.
This will lay the groundwork for further results. For the following lemma, it will be convenient to use
multi-index notation. If B[x1, ... , xn] is a polynomial ring in n variables, and a = (a1, ... , an) ∈ Zn

≥0 is an
n-tuple of non-negative integers, we let

xa = xa11 · · · xann .

Lemma 3.6. Let R = K [x1, ... , xn] be a polynomial ring over a perfect field K of characteristic p > 0. Let
f be a linearly square-free polynomial. Fix an integer e ≥ 0. Then for all integers 0 ≤ r < pe , F e

∗ f
r is a

nonzero K-linear combination of elements in the standard basis of F e
∗R.

Proof. Because f is linearly square-free, one has

f =
m∑
i=1

αix
ai , where αi ∈ K , ai = (ai1, ... , ain) ∈ {0, 1}n,

for some integer m ≥ 1, therefore

f r =
∑

k1+···+km=r

(
r

k1, ... , km

) m∏
i=1

αki
i x

kiai .
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The monomials in the expression above have the form

m∏
i=1

xkiai = x
∑m

i=1 kiai = x
∑m

i=1 kiai1
1 · · · x

∑m
i=1 kiain

n .

By assumption 0 ≤ r < pe , hence the indeterminate xj appears in each monomial with exponent

m∑
i=1

kiaij ≤
m∑
i=1

ki = r < pe .

It follows that
F e
∗ x

∑m
i=1 kiai , for i = 1, ... ,m,

is an element in the standard basis of F e
∗R. As a result, up to collecting terms, F e

∗ f
r reads

F e
∗ f

r =
∑

k1+···+km=r

((
r

k1, ... , km

) m∏
i=1

αki
i

)1/pe

F e
∗ x

∑m
i=1 kiai ,

which proves that the coefficients are in K . Because f r ̸= 0 and F e
∗R is a free R-module, some coefficient

is nonzero.

Theorem 3.7. Let R = K [x1, ... , xn] be a polynomial ring over a perfect field K of characteristic p > 0.
Let f be a linearly square-free polynomial. Fix an integer e ≥ 0. Then:

(i) For all integers s ≥ 0 and 0 ≤ r < pe ,

(f sp
e+pe−1)[1/p

e ] = (f sp
e+pe−2)[1/p

e ] = · · · = (f sp
e+1)[1/p

e ] = (f sp
e
)[1/p

e ] = (f )s .

(ii) The ν-invariants of f of level e are ν•f (p
e) = {(s + 1)pe − 1 | s ∈ Z≥0}.

(iii) If s ≥ 0 is an integer and J = (f )s+1, then νJf (p
e) = (s + 1)pe − 1.

Proof. (i) For a fixed integer s ≥ 0, Frobenius roots give an ascending chain

(f sp
e+pe−1)[1/p

e ] ⊆ (f sp
e+pe−2)[1/p

e ] ⊆ · · · ⊆ (f sp
e+1)[1/p

e ] ⊆ (f sp
e
)[1/p

e ].

In the case s = 0, Lemma 3.6 shows that F e
∗ f

pe−1 is a nonzero K -linear combination of elements in the
standard basis of F e

∗R. It follows from Proposition 2.9 that the Frobenius root (f p
e−1)[1/p

e ] is generated
by units of R, therefore (f p

e−1)[1/p
e ] = R. Now suppose that s ≥ 1. In view of the ascending chain above,

to prove equality it suffices to verify that

(f )s ⊆ (f sp
e+pe−1)[1/p

e ] and (f sp
e
)[1/p

e ] ⊆ (f )s .

On the one hand, by Remark 2.5,

(f )s = (f )s (f p
e−1)[1/p

e ] = (f s[p
e ]f p

e−1)[1/p
e ] = (f sp

e+pe−1)[1/p
e ].

On the other hand, by Proposition 2.6, the containment (f sp
e
)[1/p

e ] ⊆ (f )s is equivalent to (f )sp
e ⊆

(f )s[p
e ] = (f )sp

e
.

61Reports@SCM 9 (2024), 53–64; DOI:10.2436/20.2002.02.42.



Bernstein–Sato theory for linearly square-free polynomials in positive characteristic

(ii) Part (i) shows that for each integer s ≥ 0,

(f )s+1 = (f (s+1)pe )[1/p
e ] ⊊ (f (s+1)pe−1)[1/p

e ] = (f )s .

Then by Proposition 2.18, the ν-invariants of f of level e ≥ 0 are of the form (s + 1)pe − 1 for s ∈ Z≥0.

(iii) It follows at once from Definition 2.16 and part (ii).

Lemma 3.8. Let R = K [x1, ... , xn] be a polynomial ring over a perfect field K of characteristic p > 0 and
f be a linearly square-free polynomial. Let λ ≥ 0 be a real number and e ≥ 0 an integer. Then

(f ⌈λp
e⌉)[1/p

e ] =

{
(f )⌊λ⌋ if {λ} ≤ (pe − 1)/pe ,

(f )⌊λ⌋+1 if {λ} > (pe − 1)/pe ,

where {λ} denotes the fractional part of λ.

Proof. Write λ as λ = ⌊λ⌋ + {λ}. If {λ} ≤ (pe − 1)/pe , one has that ⌊λ⌋pe ≤ λpe ≤ ⌊λ⌋pe + pe − 1,
therefore ⌊λ⌋pe ≤ ⌈λpe⌉ ≤ ⌊λ⌋pe + pe − 1. Theorem 3.7 shows

(f )⌊λ⌋ = (f ⌊λ⌋p
e+pe−1)[1/p

e ] ⊆ (f ⌈λp
e⌉)[1/p

e ] ⊆ (f ⌊λ⌋p
e
)[1/p

e ] ⊆ (f )⌊λ⌋.

On the other hand, suppose that {λ} > (pe−1)/pe . Similarly, one finds ⌊λ⌋pe+pe−1 < λpe < ⌊λ⌋pe+pe ,
which gives ⌈λpe⌉ = ⌊λ⌋pe + pe . Again using Theorem 3.7 gives

(f ⌈λp
e⌉)[1/p

e ] = (f (⌊λ⌋+1)pe )[1/p
e ] = (f )⌊λ⌋+1,

thus proving the lemma.

Theorem 3.9. Let R = K [x1, ... , xn] be a polynomial ring over a perfect field K of characteristic p > 0.
Let f be a linearly square-free polynomial. Then:

(i) For a real number λ ≥ 0, one has τ(f λ) = (f )⌊λ⌋.

(ii) The set of F -jumping numbers of f is FJN(f ) = Z≥1. In particular, the F -pure threshold of f is 1.

Proof. (i) Since the sequence ((pe − 1)/pe)∞e=0 has limit 1 as e → ∞, there is an integer e0 satisfying
{λ} ≤ (pe − 1)/pe for all e ≥ e0. It follows from Lemma 3.8 that (f ⌈λp

e⌉)[1/p
e ] = (f )⌊λ⌋ for e ≥ e0,

therefore τ(f λ) = (f )⌊λ⌋.

(ii) Fix an integer n ≥ 0. Then τ(f λ) = (f )⌊λ⌋ = (f )n for all real numbers λ with n ≤ λ < n + 1. On the
other hand, one has τ(f n+1) = (f )n+1. Consequently n+1 is an F -jumping number of f , and the assertion
follows.

Corollary 3.10. Let f be a linearly square-free polynomial with integer coefficients in C[x1, ... , xn]. The
log-canonical threshold of f is lct(f ) = 1.

Proof. Let p > 0 be a prime number and fp be the reduction modulo p of f in Fp[x1, ... , xn]. If p does
not divide all the coefficients of f , then fp is nonzero and thus linearly square-free, hence fpt(fp) = 1 by
Lemma 3.8. This occurs for all p large enough, so lct(f ) = 1 by Theorem 2.15.
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Corollary 3.11. Let R = K [x1, ... , xn] be a polynomial ring over a perfect field K of characteristic p > 0.
The only Bernstein–Sato root of a linearly square-free polynomial f is α = − fpt(f ) = −1.

Proof. Let (td)
∞
d=0 ⊆ Z≥0 be a sequence of non-negative integers and define

νd := (td + 1)pd − 1, for d ≥ 0.

In view of Theorem 3.7, each νd is a ν-invariant of f . We thus obtain a sequence (νd)
∞
d=0 ⊆ Z≥0 of

ν-invariants with p-adic limit νd → α = −1 as d → ∞. In consequence, α = − fpt(f ) is a Bernstein–Sato
root of f . Because any sequence of ν-invariants of f is of this form, it follows that α = fpt(f ) is the only
Bernstein–Sato root of f .

The corollary above allows one to answer the following question.

Question 3.12 ([21, Question 6.16]). Suppose that the F -pure threshold α of an ideal I lies in Z(p), the

localization of Z at {pk | k ≥ 0}. Is the largest Bernstein–Sato root of I equal to −α?

The answer is affirmative for linearly square-free polynomials in any characteristic p > 0.
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