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Es revisen totes les desigualtats isosistòliques òptimes conegudes al pla projectiu

real RP2, comparant-les amb el cas del 2-tor T2. Primer s’introdueixen nocions

bàsiques de mètriques de Finsler. Després s’enuncien totes les desigualtats

isosistòliques conegudes pel cas reversible i se’n dona la idea de prova. Finalment

es tracten les desigualtats òptimes pel cas no-reversible. Actualment es coneixen

totes les desigualtats òptimes per T2, tot i que no és aix́ı per RP2. S’hi presenten

alguns petits progressos i arguments a favor de la desigualtat conjecturada en el

cas encara obert.

Abstract (ENG)
All known optimal isosystolic inequalities on the real projective plane RP2 are sur-

veyed, comparing them to the case of the 2-torus T2. First, basic notions on Finsler

metrics are introduced. Then, all previously known isosystolic inequalities are stated

and a sketch of proof is given in the reversible case. Finally, optimal inequalities in

the non-reversible case are discussed. All optimal inequalities are currently known

for T2, although this is not the case for RP2. Some recent minor advances for RP2

are presented, and some arguments are given in favour of the conjectured inequality

in the remaining open case.
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Survey on optimal isosystolic inequalities on the real projective plane

1. Riemannian and Finsler metrics

Riemannian manifolds, introduced in the second half of the 19th century by Bernhard Riemann, are man-
ifolds endowed with a scalar product on each tangent space. Usually, one works with an n-dimensional
smooth manifold M and a Riemannian metric gx : TxM × TxM → R, denoting a scalar product that
varies smoothly with x ∈ M. This scalar product gives rise to a norm on tangent vectors, by setting
∥v∥gx =

√
gx(v , v), and to a length for curves γ : [0, 1] → M, by setting ℓg (γ) =

∫ 1
0 ∥γ′(t)∥gγ(t) dt. The

scalar product can alternatively be represented in a local chart by a collection of n × n positive definite
and symmetric matrices (gij(x))ij . That way, the canonical Riemannian measure dvg of (M, g) in this local
chart is given by the formula dvg (x) =

√
det(gij(x)) dx1 ∧ · · · ∧ dxn.

Finsler manifolds are a generalisation of Riemannian manifolds, where each tangent space is endowed
with a norm instead of with a scalar product. These metric structures were first considered in 1918 by Paul
Finsler, although the term Finsler manifold was coined later by Élie Cartan, in 1934. Usually a norm ∥·∥
is a map from a vector space to R+ = [0,∞) that fulfils the following conditions: ∥v∥ = 0 only if v = 0,
∥λv∥ = |λ|∥v∥ for λ ∈ R and ∥v+v ′∥ ≤ ∥v∥+∥v ′∥. In Finsler geometry, non-necessarily symmetric norms
are considered more generally by replacing the second property by the condition ∥λv∥ = λ∥v∥ for λ ∈ R+.
The structure associated to a varying norm on each tangent space is called a Finsler metric and the norm
at some point x is usually denoted by Fx . In analogy to the Riemannian case, one defines the length of
a curve γ : [0, 1] → M by ℓF (γ) =

∫ 1
0 Fγ(t)(γ

′(t)) dt. However, and in contrast to the Riemannian case,
there is no unambiguously defined volume notion for Finsler metrics. Two of the most used ones are the
Holmes–Thompson and the Busemann–Hausdorff volumes. The former is related to the standard symplectic
form on T ∗M, and, the latter, to the Hausdorff measure of a metric space in the symmetric case. From
now on, only 2-dimensional manifolds will be considered. Fixing an auxiliary Riemannian metric g on M,
the Holmes–Thompson and Busemann–Hausdorff areas are defined as

areaHT(M,F ) :=
1

π

∫
M
|B◦

x |g dvg , and

areaBH(M,F ) := π

∫
M

1

|Bx |g
dvg , respectively.

(1)

Here, |Bx |g denotes the Riemannian measure of the unit ball Bx = {v ∈ TxM | Fx(v) ≤ 1}, and B◦
x its

polar convex body with respect to gx . Note that a Finsler metric F is uniquely defined specifying the unit
spheres Ux = {v ∈ TxM | Fx(v) = 1} at each point x ∈ M.

Definition 1.1. A Finsler metric F on M is said to be reversible if Fx(v) = Fx(−v) for all (x , v) ∈ TM.
In other words, F is said to be reversible if all the unit balls are centrally symmetric.

Since a scalar product induces a symmetric norm on each tangent space, Riemannian metrics are a
particular case of Finsler metrics. As sketched in [5, Proposition 3.5], the definitions in (1) are independent
of the chosen auxiliary Riemannian g , and an easy consequence of the Blaschke–Santaló inequality is the
following.

Proposition 1.2. If F is a reversible Finsler metric on a manifold M, then areaBH(M,F ) ≥ areaHT(M,F )
and equality holds if and only if F comes from a Riemannian metric.
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2. Isosystolic inequalities

In either the Riemannian or Finsler case, there is a notion of length of curves, and for closed manifolds that
are not simply connected one can define the following notion of systole.

Definition 2.1. The systole of a Finsler closed manifold (M,F ) which is not simply connected is defined
by

sys(M,F ) := inf{ℓF (γ) | γ is a non-contractible loop in M}.

One expects that the area of a Finsler manifold for which all non-contractible loops have a length
uniformly bounded from below cannot be made arbitrarily small. This is described by an inequality of the
form

area(M,F ) ≥ C sys2(M,F )

holding for some set of metrics F , where C is some positive constant. Such an inequality is called an
isosystolic inequality and the constant might depend on the set of metrics considered. Usually one considers
either Riemannian metrics, reversible Finsler metrics or all Finsler metrics. An isosystolic inequality is said
to be optimal if the constant C cannot be improved. Finally, it is said that there is systolic freedom if such
a positive constant does not exist.

The first optimal isosystolic inequality was found for the 2-torus in 1949 by Charles Loewner. As it
is explained by his student Pao Ming Pu at the end of [6], Loewner found it during the lectures of a
course on Riemannian geometry he was teaching at the time. He proved that for any Riemannian metric g

on the 2-torus, area(T2, g) ≥
√
3
2 sys2(T2, g), and that the constant

√
3
2 is optimal. Inspired by Loewner’s

method, Pu proved in [6] that for the real projective plane area(RP2, g) ≥ 2
π sys2(RP2, g) for any Rieman-

nian metric g and that the constant 2
π is also optimal. For the case of Finsler metrics and the 2-torus, a

complete summary of optimal isosystolic inequalities is done in [2]. This article gathers all known optimal
constants, including the ones for Riemannian, reversible Finsler and not-necessarily reversible Finsler met-
rics for both Holmes–Thompson and Busemann–Hausdorff areas. There, T2 is identified with the quotient
of the Euclidean plane R2 by the integer grid Z2. In that case, a metric on T2 is just a metric on R2

compatible with the quotient map, and non-contractible loops in T2 correspond to paths between points
in R2 that differ by some z ∈ Z2 \{(0, 0)}. The strategy followed in the article is to reduce the general case
to the case where the metric is flat, in the sense that the unit balls in TxT2 are the same for all x ∈ T2.
Then, the inequality is most of the times a consequence of previously known results in convex geometry.
See [2] for all the details.

2.1 The real projective plane

Pu, in [6], followed an analogous procedure to what Loewner did with T2 but for RP2, so it might be
interesting to explicit a parallelism between RP2 and T2. What is the universal covering map of RP2?
How can non-contractible loops in RP2 be characterised? Is there an analogous notion of flat metric
for RP2 that makes computations easier? To answer the first question, recall that RP2 can be defined as
a quotient space identifying antipodal points on the 2-sphere S2, as is shown in Figure 1. The quotient
map S2 → RP2 ∼= S2/{± Id} is the universal covering map over RP2 since S2 is simply connected, and
plays an analogous role to the quotient map R2 → T2 ∼= R2/Z2.
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S2

⇝

RP2

Figure 1: Universal covering map S2 → RP2.

Alternatively, one could identify RP2 with a 2-disc D that has antipodal points on ∂D identified. When
it comes to the characterisation of non-contractible loops, it can be shown that non-contractible loops
in RP2 lift to paths in S2 joining antipodal points. See the illustration in Figure 2 for an intuitive idea and
see, for instance, [5, Proposition 2.1] for a proof. More precisely, the condition of being non-contractible
might be translated to the disc representation noting that a path in S2 from a point to its antipodal point
must cross the horizon an odd number of times. As a subtlety, if the start and endpoints lie in the horizon,
the open curve excluding these two points must cross the horizon an even number of times. Then, if starting
and ending at points of the horizon counts as another cross, non-contractible loops in RP2 are characterised
by crossing the horizon an odd number of times. Crossing the horizon is translated to jumping between
opposite points of ∂D, so non-contractible loops in RP2 are characterised by having an odd number of
these jumps.

S2

⇝

RP2

Figure 2: Correspondence between loops in RP2 and their lifts to S2.

Because translations are isometries of the Euclidean plane, a given convex body can be parallel trans-
ported from a point to another consistently to define a notion of flat Finsler metric on the 2-torus. Tangent
vectors of S2 could also be parallel transported to another point. However, the transported vector will
depend on how the parallel transport is performed. Thus, in order to get a well-defined notion of invariant
metric on S2, one needs to assume the convex body to be rotationally invariant. In this special case, the
metric is said to be a round metric on RP2, and can be alternatively defined as some multiple of the
Riemannian metric obtained from the natural embedding of S2 in R3 as the unit Euclidean sphere. These
metrics will play a similar role for RP2 compared to the role that flat Finsler metrics play on T2, although
round metrics are much more restricted.
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2.2 Previously known inequalities

As already mentioned, Pu proved in [6] that area(RP2, g) ≥ 2
π sys2(RP2, g) for any Riemannian metric

and that equality holds if and only if g is isometric to a round metric on RP2. See [5, Section 4] for a
proof that uses a more modern style, similarly to how the T2 case is treated in [2]. Note that in both cases
equality holds for a flat or round metric, although for Pu’s inequality all round metrics on RP2 are optimal
while for Loewner’s inequality only some flat metrics on T2 are optimal. In both cases, the procedure is to
note that, by the uniformisation theorem, any metric is isometric to a conformal multiple of a flat or round
one. Then, one observes that averaging the conformal factor gives a multiple of the flat or round metric,
while it leaves the area invariant but increases the systole. Finally, the inequalities follow from the optimal
flat or round metric cases. It can be computed that area(RP2, g) = 2

π sys2(RP2, g) for any round metric
on RP2 (see for instance [5, Section 4.2]). For the case of T2, before concluding, one must prove that the
same isosystolic inequality holds also for any flat metric g . This is not as straightforward as for RP2, but
it is equivalent to finding the Hermite constant γ2, as is explained in [2].

Ivanov proved in [4] that areaHT(RP2,F ) ≥ 2
π sys2(RP2,F ) also holds for reversible Finsler metrics.

The idea of the proof is first to consider a non-contractible loop γ0 on RP2 such that ℓF (γ0) = sys(RP2,F ),
which can be done by compactness arguments. Such loops are usually called systolic loops. As is shown
in Figure 2, the union of the two lifts of γ0 divides the 2-sphere in two 2-discs. Considering the pullback
metric φ on one of the discs D, the inequality is reduced to finding an inequality between areaHT(RP2,F ) =
areaHT(D,φ) and the length of ∂D. Introducing cyclic maps f = (f1, ... , fn), Ivanov proves that

areaHT(D,φ) ≥
1

2π

∫
∂D

n∑
i=1

fi · dfi+1. (2)

Finally, Ivanov notes that for cyclically ordered and equidistant points {pi}ni=1 ⊆ ∂D, the choice fi (x) =
dφ(pi , x) leads to a cyclic map. See [4, Section 3] for the definition, properties and examples of cyclic
maps. Under the assumption of a reversible metric,

∫
∂D fi · dfi+1 is easy to compute using an arc-length

parametrisation of ∂D. In fact, it amounts to computing the signed area of the curve shown in Figure 3a.

The signed area of each rectangle is 4 sys2(RP2,F )
n

(
1− 2

n

)
, which leads to

areaHT(RP2,F ) = areaHT(D,φ) ≥
2

π
sys2(RP2,F )

(
1− 2

n

)
. (3)

The proof is concluded noting that n can be chosen arbitrarily large. Ivanov’s result and Proposition 1.2
imply that areaBH(RP2,F ) ≥ 2

π sys2(RP2,F ) for any reversible Finsler metric. Note that the inequality is
optimal in both cases, because equality holds for any round metric on RP2, which is Riemannian.

Round metrics do not seem to be relevant for Ivanov’s result. Nevertheless, they play an important role
in the case of T2. A stable norm on TxT2, introduced in [3], is defined as ∥z∥x = limk→∞

d(x ,x+kz)
k for z ∈

Z2. This norm depends on the original Finsler metric on T2 ∼= R2/Z2, and it can be shown to be independent
of x . This means that the stable metric is flat, and it turns out that areaHT(T2,F ) ≥ areaHT(T2, ∥·∥) and
sys(T2,F ) = sys(T2, ∥·∥). Moreover, as is proven in [2], areaBH(T2,F ) ≥ areaBH(T2, ∥·∥) also for reversible
metrics. Thus, all these optimal isosystolic inequalities reduce to their respective flat cases. Following what
is explained in [2], Minkowski’s first theorem implies that areaBH(T2,F ) ≥ π

4 sys
2(T2,F ) for reversible and

flat metrics, being optimal for the supremum norm. Due to a theorem by Mahler, the areas of a symmetric
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convex ball and its dual are related by |Bx | · |B◦
x | ≥ 8, being also optimal for the supremum norm. This

implies that areaHT(T2,F ) ≥ 2
π sys2(T2,F ) is optimal for flat and reversible metrics. By the properties of the

stable norm one deduces that the previous optimal inequalities for flat and reversible metrics are also valid
for any reversible metrics. As a final comment, the optimal isosystolic inequalities for areaHT(T2,F ) and
areaBH(T2,F ) are different for the reversible case, in contrast with the case of RP2. This is because, among
Finsler metrics, optimal metrics F0 for T2 are not Riemannian, and satisfy areaBH(T2,F0) > areaHT(T2,F0)
by Proposition 1.2, while optimal metrics for RP2 are the round ones, which are Riemannian.

3. Systolic freedom for Busemann–Hausdorff area

Minkowski’s theorem prevents symmetric convex bodies K ⊆ R2 such that int(K ) ∩ Z2 = {(0, 0)} from
having a Lebesgue measure |K | > 4, as is explained in [2, Section 3]. The condition int(K )∩Z2 = {(0, 0)}
ensures that the flat metric F with unit ball K fulfils sys(T2,F ) ≥ 1. This key fact implies the optimal
inequality for the Busemann–Hausdorff area and reversible metrics. However, for non-symmetric convex
bodies the theorem no longer applies. In fact, as is proven in [2, Section 3.2], there exists a family of flat

metrics Fε such that sys(T2,Fε) = 1 and |Kε| = (1+ε)2

2ε for the corresponding unit ball Kε. By definition of
the Busemann–Hausdorff area, letting ε → 0 allows one to have areaBH(T2,Fε) arbitrarily small, proving
systolic freedom.

2s
n s − 2s

n
s

2s
n

s − 2s
n

s

(a) Here s denotes sys(RP2,F ).

ε

L

−1 1

(b) The upper direction points to the pole.

Figure 3: In the left, curves in R2 whose signed areas give the result of the individual integrals in (2). In
the right, unit balls along the meridians of the hemisphere.

For the case of RP2, an analogous procedure would be to look for arbitrarily large unit balls that do not
lead to an arbitrarily small value for the systole. This is proven to be possible in [5, Section 6], which leads
to the conclusion that systolic freedom also holds in the non-reversible case for areaBH. The idea behind the
construction in [5] is to build a metric in a hemisphere of S2 such that the equator contains a systolic loop
of some fixed length. In order to have a small value for areaBH(RP2,F ), one needs to have large unit balls
in great part of the hemisphere of S2. However, these large unit balls (which lead to short distances) must
be such that a systolic loop still lies inside the equator. This is done with unit balls of arbitrarily large size L
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in one direction and arbitrarily small size ε in the opposite direction, as is shown in Figure 3b. These balls
are allowed to be arbitrarily large and they prevent curves that go towards the pole from being too short.
Note that they are convex sets containing the origin, so they correspond to some non-reversible Finsler
metric. The final step is to make such a metric on a hemisphere of S2 well-defined and compatible with a
metric on RP2. First of all, one needs to have a well-defined unit ball at the pole: it cannot depend on the
meridian that approaches the point. This can be achieved changing smoothly the unit ball in Figure 3b to
a rotationally invariant one around the pole. Besides, a metric F on S2 is compatible with a metric on RP2

if Fx(u1) = F−x(u2), where u1 and u2 are the different lifts of some v ∈ T[x]RP2. Geometrically, assume
that one observes S2 from the point such that x and −x are the closest and furthest points of the equator,
respectively. As is illustrated in Figure 2, from this point of view, u1 and u2 are half turn rotations of one
another. A change in point of view so that −x is now in front and still with the pole above corresponds
to a horizontal flip of the view of T−xS2. In conclusion, the unit balls of antipodal points in the equator
must be vertically flipped when seen the same way as in Figure 3b. Thus, it is enough to change smoothly
the unit balls in the equator to vertically symmetric ones in order to have a compatible metric.

Note that both smoothing procedures can be done without changing the Lebesgue measure of the
unit balls and that the angular integration region is

(
0, π2

)
× (0, 2π), which has an area of π2. Then,

for this metric, one gets from (1) that areaBH(RP2,F ) = π
2(ε+L) · π

2, which can be made arbitrarily small
for L → ∞. When it comes to the systole, recall that a lift of a non-contractible loop γ must jump between
opposite points of the equator an odd number of times. Considering only a part of γ if necessary, one can
assume that γ joins opposite points of the equator without any other jump in between. Note that the unit
balls of Figure 3b are a non-symmetric version of the supremum norm ∥(u1, u2)∥ = max{|u1|, |u2|}. For this
non-symmetric version it can be computed that ∥(u1, u2)∥ = max

{
|u1|, u2ε ,−

u2
L

}
. See [5, Proposition 6.2]

for the details. If γ = (γ1, γ2) does not enter in the smoothen zone around the pole,

ℓF (γ) =

∫ 1

0
Fγ(t)(γ

′
1(t), γ

′
2(t)) dt ≥

∣∣∣∣∫ 1

0
γ′1(t) dt

∣∣∣∣ = |γ1(1)− γ1(0)| ≥ π.

Note that equality holds if γ′2(t) = 0 and γ1 increases or decreases monotonically between azimuthal
coordinates that differ exactly in π. If γ enters the smoothen zone around the pole, the first part of γ must
join the initial point with the zone. By what has been mentioned above, the length of vectors pointing
to the pole is proportional to 1

ε . Then, a small enough choice of ε would imply that ℓF (γ) > π also, and
therefore sys(RP2,F ) = π. In the end, areaBH(RP2,F ) = π

2(ε+L) sys
2(RP2,F ) < π

2L sys
2(RP2,F ) for any

value of L > 0. In particular, since L can be chosen arbitrarily large, there is systolic freedom for RP2 and
the Busemann–Hausdorff area. See [5, Section 6] for more details.

4. Optimal inequalities for non-reversible metrics

Álvarez Paiva, Balacheff and Tzanev proved in [1, Theorem IV] that areaHT(T2,F ) ≥ 3
2π sys2(T2,F ) for flat

metrics and that equality holds when the unit ball is the triangle with vertices (1, 0), (0, 1) and (−1,−1).
Finally, by the properties of the stable norm, one deduces that

areaHT(T2,F ) ≥ areaHT(T2, ∥·∥) ≥ 3

2π
sys2(T2, ∥·∥) = 3

2π
sys2(T2,F )

also for any Finsler metric.
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Finding the optimal isosystolic inequality for the more general Finsler case for areaHT and RP2 is
still an open problem. Existence of an optimal inequality can be proven by symmetrising the metric.
Indeed, considering the symmetric metric F̃x(u) = Fx(u) + Fx(−u), it can be proven in dimension 2 that
|B̃◦

x | ≤ 6|B◦
x | (see [7, Theorem 1]). If γ ⊆ RP2 is a systolic loop for F̃ , the inverted loop −γ is also non-

contractible, and then sys(RP2, F̃ ) = ℓF̃ (γ) = ℓF (γ) + ℓF (−γ) ≥ 2 sys(RP2,F ). Joining these inequalities
with the optimal inequality for reversible metrics,

areaHT(RP2,F ) ≥ 1

6
areaHT(RP2, F̃ ) ≥ 1

6
· 2
π
sys2(RP2, F̃ ) ≥ 2

3
· 2
π
sys2(RP2,F ).

Note that this implies that the constant 2
π can be improved, at most, by a factor of 2

3 for non-reversible

metrics. However, [7, Theorem 2] states that areaHT(RP2,F ) = 1
6 areaHT(RP2, F̃ ) if and only if almost all

unit balls are triangles. The fact that the optimal metric for the reversible case is a round one, far from
having symmetrised triangular unit balls, suggests that 4

3π is not optimal.

Conjecture 4.1. The optimal isosystolic inequality for Finsler metrics and Holmes–Thompson area is
areaHT(RP2,F ) ≥ 2

π sys2(RP2,F ).

The author has tried to attack the non-reversible case and Holmes–Thompson area with little success.
Consider the family of metrics used in the proof of systolic freedom in the previous section. For simplicity,
consider the metric before the smoothing, which can be done in an irrelevant arbitrarily small region.
Imposing that the systole is still attained along the equator amounts to imposing that 1

ε +
1
L ≥ 2. Indeed,

as before, if γ does not touch the pole, ℓF (γ) ≥ π. And if it touches it, it must go up and then back
down, having a length ℓF (γ) ≥ π

2

(
1
ε +

1
L

)
≥ π. The dual convex body of the unit balls of Figure 3b can be

computed to be the convex hull of the points (±1, 0),
(
0, 1ε
)
and

(
0,− 1

L

)
. This convex kite has Lebesgue

measure 1
ε +

1
L , and similarly to the Busemann–Hausdorff case, by (1),

areaHT(RP2,F ) =
1
ε +

1
L

π
· π2 =

1

π

(
1

ε
+

1

L

)
sys2(RP2,F ).

In conclusion, areaHT(RP2,F ) ≥ 2
π sys2(RP2,F ) if 1

ε +
1
L ≥ 2, which prevents the existence of shortcuts

through the pole. The smoothening process would just lead to results arbitrarily close to the above inequality,
agreeing with Conjecture 4.1.

Any unit ball can be drawn inside a rectangle and containing a triangle that touches three of the furthest
points from the origin. This might leave shortest lengths invariant and it might be interesting to perform
a similar test for triangle-shaped unit balls. For example, consider triangles with vertices (1, 0), (−δ, ε)
and (−δ,−L). In this case, the dual triangle has vertices

(
−1

δ , 0
)
,
(
1, 1+δ

ε

)
and

(
1,−1+δ

L

)
, and Lebesgue

measure (1+δ)2

2δ

(
1
ε +

1
L

)
. The norm is not so easy to compute but one could expect that imposing that the

systole is attained around the equator would imply the same (or worse) inequality. It would be a surprise if
there existed values for ε, L and δ that prove Conjecture 4.1 wrong. The author’s search of examples that
prove the conjecture wrong has been unfruitful and looking for ways to prove it might be more sensible.

A minor advance in this direction has been achieved in [5, Theorem 5.13], giving a slight generalisation
of Ivanov’s result for reversible metrics. It states that the inequality is also true for metrics such that the
distance between any two points of a systolic loop γ0 is attained through γ0. In other words, one needs to
have no shortcuts between points of γ0 that deviate from γ0. In this case, if γ0 connects x to y (and not
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the other way around), the definition of systole ensures that there are no shortcuts from x to y . However,
in the non-reversible case, there might be shortcuts from y to x . Ivanov’s assumption is to have a reversible
metric, which implies that there are no such shortcuts. The assumption in [5, Theorem 5.13] is weaker but
still ensures that there are no such shortcuts. The proof is essentially the same that the one for Ivanov’s
theorem although Figure 3a gets slightly modified. For instance, the curve is no longer contained in the
square [0, s]2, and the short straight lines become unknown but bounded. The corresponding curve is shown
in [5, Figure 6], and the inequality (3) is modified to

areaHT(RP2,F ) = areaHT(D,φ) >
2

π
sys2(RP2,F )

(
n − 1

n
− 2 · n − 1

n2

)
.

Luckily, for arbitrarily large n the inequality becomes areaHT(RP2,F ) ≥ 2
π sys2(RP2,F ). A sufficient

condition to avoid shortcuts is that the systolic curve γ0 has the same forward and backward length. In
particular, this holds if Fγ0(t)(γ

′
0(t)) = Fγ0(t)(−γ′0(t)) for all t. In other words, reversibility of the metric

along a systolic curve is enough. Some ideas to attack the general case would be to try to modify the metric
around a systolic curve to a case under which the theorem holds. This might be easier than to modify the
metric at all points, although the attempts done by the author lead to inconclusive scenarios. For instance,
making the unit balls symmetric along a systolic curve by enlarging them, areaHT decreases but shortcuts
might appear. Instead, if the balls are symmetrised by stretching them, the systole must increase, but so
does the area. The only way the author has tried to define a kind of an overall averaged norm on S2 is
considering

F̃x(v) =

∫
SO(3)

Fσ(x)((Txσ)v) dµ(σ),

where µ is the unique left-invariant Haar measure on SO(3) such that µ(SO(3)) = 1. Intuitively, the unit
norm has been averaged over all directions around a point and over all points, so that F̃ corresponds to a
round metric on RP2. It can be proved that sys(RP2, F̃ ) ≥ sys(RP2,F ), because any curve joining antipodal
points under the action of σ ∈ SO(3) has the same property. However, areaHT(RP2,F ) ≥ areaHT(RP2, F̃ )
can be false in some cases. For instance, considering the unit balls in Figure 3b, the average norm for the
tangent vector (1, 0) in all directions should be

1

2π

∫ π

−π
Fx(cos t, sin t) dt =

1

π

∫ π/2

−π/2
max

{
|cos t|, sin t

ε
,−sin t

L

}
dt =

√
1 + ε2

πε
+

√
1 + L2

πL
.

Then, the unit sphere is given by all vectors lying on the Euclidean circle with radius r = π√
1+ε2

ε
+

√
1+L2

L

.

For the case of ε = L = 1, recall that |B◦
x | = 1

ε +
1
L = 2, and for the averaged metric,

|B̃◦
x | =

π

r2
=

1

π

(√
1 + ε2

ε
+

√
1 + L2

L

)2

=
(
√
2 +

√
2)2

π
=

8

π
> |B◦

x |.

This shows that the averaging procedure fails to have good properties even for the supremum norm. As
was suggested by F. Balacheff, another approach could be to consider a contact structure on the unitary
tangent bundle S∗RP2. With contact forms there is a theorem similar to the uniformisation theorem that
says that the initial contact form and a fixed round one are contactomorphic. One might be able to average
over the group of diffeomorphisms of S∗RP2 that leaves the round contact form invariant. This is similar
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to the fact that the action of SO(3) leaves a round metric on S2 invariant. It turns out that S∗RP2 is
isomorphic to the Lens space L(4, 1). However, the systole seems to be more difficult to deal with.

A final idea to believe that Conjecture 4.1 is true is the following. Consider an attempt of minimising
the Holmes–Thompson area only around a systolic loop with a fixed length. In order to decrease the
value of areaHT one must increase the Lebesgue measure of the unit balls. However, this process could
be intuitively done until the metric is symmetric along the systolic loop because otherwise the systole
might decrease. In conclusion, it seems sensible that the metric that minimises areaHT is symmetric along
a systolic loop, and the generalisation of Ivanov’s theorem would apply in this case.
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