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Resum (CAT)
Les eines desenvolupades en la dècada de 1950 per Calderón i Zygmund ens

permeten demostrar que algunes integrals singulars estan ben definides i fitades en

els espais Lp. Tot i que l’espai euclidià fos el context original on totes aquestes idees

es varen desenvolupar, aquestes propietats es generalitzen a altres espais mètrics

de mesura i a integrals singulars de valors vectorials. Al llarg de les dècades, la

teoria ha anat guanyant en abstracció i interès. Encara avui en dia, hi ha operadors

que s’escapen de l’abast de la teoria, com és l’operador diàdic esfèric maximal.

Abstract (ENG)
The tools developed in the 1950s by Calderón and Zygmund enable us to prove that

certain singular integrals are well defined and bounded in Lp spaces. Although the

Euclidean space was the original context where all these ideas were developed, these

properties generalise to other measure metric spaces and to vector-valued singular

integrals. Along the decades, the theory has been acquiring abstraction and luring

attention. Even nowadays, there are operators that fall outside the scope of the

theory, for instance the dyadic spherical maximal operator.
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1. Introduction

By “singular integral operators” we mean, in the first instance, convolution operators in Rn the kernel
function of which presents a singularity, say, at the origin. Namely, we think of operators of the kind

Tf (x) =

∫
Rn

K (x − y)f (y) dy , x ∈ Rn,

for some given function K that blows up at the origin. Singular integrals show up in a number of problems
of analytic nature. For instance, they generate solutions of some partial differential equations, they arise
in complex analysis, they underpin apparently unrelated settings in geometric measure theory, etc. See
Figure 1 for an illustrative example.

∆u = 0 ∆v = 0

f Hf

Figure 1: Appearance of the Hilbert transform (the most iconic example of singular integral in R) in
Dirichlet’s problem for the Laplace equation. First, let f be defined on the axis y = 0. Obtain u such
that ∆u = 0 in the upper half plane and f is the boundary value of u. Then, get the conjugate harmonic
function v of u (the one that turns u(x , y) + i v(x , y) into a holomorphic function on the complex plane).
Finally, obtain the Hilbert transform of f , Hf , by computing the limit lim

y→0
v(x , y).

For decades, analysts felt uncomfortable when utilising singular integrals because there was no knowl-
edge regarding their boundedness properties. Were they handling continuous operators on Lp spaces or
not? In order to answer this question, Harmonic Analysis is the natural framework.

In the middle and end of the 20th century, the field experienced a burst. Brilliant mathematicians
contributed to the expansion of the theory concerning singular integrals. Calderón, Zygmund, Bourgain
and Stein are just some of the most influential driving forces in the field, who built upon the work of other
great figures like Hardy, Littlewood and Paley.

In the literature, singular integrals are ubiquitous, as they serve to step forward at stages within problems
of different natures. Despite this, theory of singular integrals is often just partially explained and treated
as an instrument. In this document, we centre them in the spotlight.

2. Calderón–Zygmund theory

The Calderón–Zygmund theory was developed originally in the setting of Rn in the 1950s, set off by
the collaborative breakthrough paper [3] published in 1952. It aimed to prove boundedness of singular
convolution-type operators on spaces of functions (mainly Lp spaces) built over Rn.
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The starting point is a decomposition lemma that, given an integrable function, enables to split the
domain Rn into a set where the function is bounded, and another set where, although the function may be
unbounded, it is controlled in average.

Lemma 2.1 (Calderón–Zygmund lemma in Rn; see [5, Chapter 1, Theorem 4]). Let f ∈L1(Rn) and λ > 0.
There exists a partition Rn = F ⊔ Ω, such that

(a) |f (x)| ≤ λ a.e. x ∈ F , and

(b) Ω can be written as a countable union of cubes Qk with disjoint interior Ω =
⊔

k∈NQk , moreover
satisfying

λ ≤ 1

|Qk |

∫
Qk

|f (x)| dx ≤ 2nλ, ∀ k ∈ N. (1)

Proof. Mesh Rn into a set of cubes {Q0
k}k∈N with disjoint interiors and of the same size, large enough so

that the averages of |f | are bounded above by the given λ on all of the cubes in the mesh:

1

|Q0
k |

∫
Q0

k

|f (x)| dx < λ, ∀ k ∈ N.

This is possible because f is integrable,

1

|Q0
k |

∫
Q0

k

|f (x)| dx ≤ ∥f ∥1
|Q0

k |
,

so choose the size of the cubes such that |Q0
k | >

∥f ∥1
λ .

We are going to run an algorithm in order to construct F and Ω. Set Ω = ∅ and the step s = 1. We
split each of the cubes Q0

k into 2n dyadic descendant cubes of the same size Q1
k .

Case 1: For each descendant cube in step s (that is, for each k ∈ Z), if

1

|Qs
k |

∫
Qs

k

|f (x)| dx > λ,

then Qs
k is selected to take part in the set Ω, so update Ωnew = Ωold ∪ Qs

k . For such a cube Qs
k , assume

that Qs−1
r is its direct ancestor. Then, by (2) and the fact that Qs−1

r fell into Case 2,

λ <
1

|Qs
k |

∫
Qs

k

|f (x)| dx ≤ 2n

|Qs−1
r |

∫
Qs−1

r

|f (x)| dx ≤ 2nλ, (2)

which proves (1) for Qs
k .

Case 2: Instead, if
1

|Qs
k |

∫
Qs

k

|f (x)| dx ≤ λ,

then we iterate and further divide Qs
k into 2n identical descendant cubes (each with half the sidelength of

the ancestor), and check into which of the two cases each of them falls.
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Update snew = sold + 1 and let the algorithm run recursively. This way, we obtain the desired parti-
tion Rn = F ⊔Ω, Ω being the union of all those cubes that fell into Case 1, and F being the complement
of Ω. Plus, (b) has been verified for all cubes Qs

k that were selected for Case 1. Fact (a) follows from the
Lebesgue differentiation theorem: if x ∈ F , this means that there exists a sequence of nested dyadic cubes
containing x , (Qs

k(s))s∈N, (Q
s
k(s)) ⊃ (Qs+1

k(s+1)) being direct dyadic descendants ∀ s ∈ N, such that all of
these cubes fell into Case 2, implying that

f (x) = lim
s→∞

1

|Qs
k(s)|

∫
Qs

k(s)

|f (y)| dy ≤ λ.

This decomposition of the domain Rn of f leads to a useful decomposition of the function f itself. By
defining

g(x) :=


f (x), x ∈ F ,

1

|Qk |

∫
Qk

f (x) dx , x ∈ Qk ,

and b(x) := f (x)− g(x), we reach the following corollary.

Corollary 2.2 (See [5, Chapter 2, Theorem 1]). Let f ∈ L1(Rn) and λ > 0. There exists a decomposition
of f as sum of two functions, f = g + b such that:

(a) g(x) ≤ 2nλ a.e. x ∈ Rn,

(b)
1

|Qk |

∫
Qk

b(x) dx = 0 ∀ k ∈ N,

(c)
1

|Qk |

∫
Qk

|b(x)| dx ≤ 2nλ ∀ k ∈ N,

(d) supp(b) =
⊔

k∈NQk and

(e) b ≤ f a.e.

The functions g and b are usually referred to as the “good” and the “bad” part of f . Corollary 2.2 is
the key ingredient to prove Theorem 2.4, that allows us to bound singular integral operators. However, as
one may guess, we first need to make some assumption on the regularity of the singular kernel function.
The minimal known hypothesis that succeeds is the so-called Hörmander’s condition.

Definition 2.3. A convolution kernel K on Rn is said to satisfy Hörmander’s condition if

B := sup
|y |>0

∫
|x |≥2|y |

|K (x − y)− K (x)| dx <∞. (3)

Since the integral is computed over the region {x ∈ Rn : |x | > 2|y |}, the singularity of the kernel is
avoided both for x − y and for x . In some sense, we are asking that the global variation of the kernel is not
so wild that is not integrable. Nevertheless, Hörmander’s condition is usually seen as a weakened version
of the stronger condition

|∇K (x)| ≤ C

|x |n+1
,

for all x ∈ Rn away from the origin. All in all, here is the theorem that gives meaning to the theory. In the
literature, one can find many variations and consequences of it.
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Theorem 2.4 (See [5, Chapter 2, Sections 2 and 3]). Let T be a linear operator such that there exists a
measurable kernel function K such that

Tf (x) =

∫
Rn

K (x − y)f (y) dy

converges absolutely whenever f ∈ L2(Rn) and x /∈ supp(f ). Suppose the following:

(i) T is bounded on L2(Rn): there exists A > 0 such that for all f ∈ L2(Rn), ∥Tf ∥2 ≤ A∥f ∥2.

(ii) The kernel K satisfies Hörmander’s condition (3) with constant B.

Then,

(a) T is bounded on Lp(Rn), 1 < p <∞, and

∥Tf ∥p ≤ Cn,p∥f ∥p,

for f ∈ Lp(Rn) and Cn,p > 0 only depending on n, p, A and B.

(b) T is weak-type (1, 1), i.e., for all λ > 0 and f ∈ L1(Rn),

λ|{x ∈ Rn : |Tf (x)| > λ}| ≤ Cn∥f ∥1,

where Cn > 0 is a constant only depending on the dimension n, A and B.

The strategy for the proof is, accounting for the boundedness assumption on the Hilbert space L2(Rn),
using the Calderón–Zygmund lemma to first show (b), i.e., that T is weak-type (1, 1). After that, one
can use the Marcinkiewicz interpolation theorem between p = 1 and p = 2 to get (a) for 1 < p ≤ 2.
Eventually, a duality argument covers the dual range 2 ≤ p <∞.

3. Extensions of the theory

In view of Theorem 2.4, it is natural to wonder if it admits generalisations to other settings. Indeed, under
suitable conditions, it is possible to extend the theorem, on the one hand, to other measure metric spaces,
and on the other hand, to vector-valued functions. The first setting is useful, for example, in the theory
of parabolic PDEs, whereas the latter generalisation turns out to be handy to study maximal operators or
operators of the kind “square functions”. In this section, we present such an abstraction accounting for the
combination of both extensions.

Definition 3.1. A measure metric space ((X , d), Σ,µ) is said to have the doubling property if

µ(B2r (x)) ≤ Cµ(Br (x)), ∀ r > 0, x ∈ X ,

C > 0 being a universal constant for the space X . This is, measures of dilated balls are comparable.

The doubling property is crucial if we need available inequalities of the kind (2). Along this section,
((X , d), Σ,µ) denotes a generic σ-finite measure space over a metric space equipped with a regular measure
enjoying the doubling property.

Next, note that in an arbitrary metric space, cubes are not available anymore, but only balls. Therefore,
the proof of Lemma 2.1 completely breaks apart, since it relies heavily on meshing Rn into cubes. This
implies that the strategy to get a lemma of the same flavour has to be totally different. To this end, the
Hardy–Littlewood maximal function aids.
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Extensions of the Calderón–Zygmund theory

Definition 3.2. Let ((X , d), Σ,µ) be a measure metric space and let f ∈ L1loc(X ) be a locally integrable
function. The centred Hardy–Littlewood maximal function of f is defined as

Mf (x) := sup
r>0

1

µ(Br (x))

∫
Br (x)

|f (y)| dµ(y). (4)

Similarly, the uncentred Hardy–Littlewood maximal function of f reads as

Muncf (x) := sup
B∋x

1

µ(B)

∫
B
|f (y)| dµ(y),

where the supremum is taken over all balls B containing x .

When the doubling property is in force, then the centred and uncentred version are easily checked
to be comparable. It is also remarkable to note that the Hardy–Littlewood maximal function defines a
bounded operator on Lp spaces, 1 < p < ∞ ([5, Chapter 1, Theorem 1]). In fact, in order to show
Lp-boundedness for a broad class of so-called Calderón–Zygmund operators (those under the hypotheses
of Theorem 2.4 or Theorem 3.5), one can first show, as pointed out, that the Hardy–Littlewood maximal
function is Lp-bounded, and then use this specific result to prove Lp-boundedness for the broad class of
Calderón–Zygmund operators.

Lemma 3.3 (Calderón–Zygmund lemma in the general setting; see [7, Chapter 1, Theorem 2]). Let f ∈
L1(X ) and λ > 0. There exists a partition of the space X = F ⊔ Ω, F being a closed set and Ω an open
set, such that

(a) |f (x)| ≤ λ a.e. x ∈ F , and

(b) Ω can be written as a countable disjoint union of smaller sets Ω =
⊔

k∈NΩk moreover satisfying

1

µ(Ωk)

∫
Ωk

|f (x)| dµ(x) ≤ Cλ, ∀ k ∈ N,

for some constant C > 0.

Proof. Let f ∈ L1(X ) and fix λ > 0. Choose F := {x ∈ X : Mf (x) ≤ λ} and so Ω := {x ∈ X : Mf (x) >
λ}, being respectively closed and open, because Mf (x) is a continuous function of x .

By the Lebesgue differentiation theorem, for a.e. x ∈ F ,

λ ≥ Mf (x) = sup
r>0

1

µ(Br (x))

∫
Br (x)

|f (y)| dµ(y) ≥ lim
r→0

1

µ(Br (x))

∫
Br (x)

|f (y)| dµ(y) = |f (x)|,

so (a) is shown.

Let us introduce some notation. For a ball B = Br (x) centred at x with radius r and for some universal
constants 0 < C ∗ < C ∗∗, denote by B∗ := BC∗r (x) and B∗∗ := BC∗∗r (x) the centred dilations by
factors C ∗ and C ∗∗, respectively. In order to prove (b), we use a Vitali-type covering lemma ([7, Chapter 1,
Lemma 2]): given the closed set F , there exists a sequence of balls (Bk)k∈N and two families of each
dilations (or universal dilation constants 0 < C ∗ < C ∗∗ ), (B∗

k )k∈N and (B∗∗
k )k∈N, such that

(a) (Bk)k∈N are pairwise disjoint,

(b)
⋃

k B
∗
k = F c , and

(c) B∗∗
k ∩ F ̸= ∅, ∀ k .
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It is convenient to extract another sequence of sets. Take the first element in (B∗
k )k∈N and define Q1 := B∗

1 .
Next, define Q2 := B∗

2 ∖ (Q1). By an inductive process, build

Qk := B∗
k ∖

(
k−1⋃
j=1

Qj

)
.

It is directly deduced that the sets Qk satisfy
⋃

k Qk = F c just like the B∗
k , although with the advantage

that the Qk are pairwise disjoint. The downside, compared to the B∗
k , is that the Qk are no longer balls,

but other less elementary sets. The name Qk of such new sets is inspired by their role in the proof of
Theorem 3.5, which mimics the one carried out by the cubes in the proof of the X = Rn case.

Now, for each Bk in the sequence (Bk)k∈N, choose a point pk ∈ B∗∗
k ∩ F . By the definition of F ,

λ ≥ Mf (pk) ≥ CuncMuncf (pk) ≥
Cunc

µ(B∗∗
k )

∫
B∗∗
k

|f (x)| dµ(x)

≥ Cunc

µ(B∗∗
k )

∫
Qk

|f (x)| dµ(x) ≥ Cunc

Cdp

1

µ(Qk)

∫
Qk

|f (x)| dµ(x),
(5)

where Cdp is the constant from the doubling property (see Definition 3.1) and Cunc is the constant in the
equivalence

Mf ≤ Muncf ≤ CuncMf .

In fact, Cunc = (Cdp)−1. The two last inequalities in (5) stem from the fact that Bk ⊆ Qk ⊆ B∗∗
k

and the doubling property: µ(Qk) ≤ µ(B∗∗
k ) ≤ Cdpµ(Bk) ≤ Cdpµ(Qk). Since (Qk)k∈N partition Ω,

Ω =
⊔

k Ωk ≡
⊔

k Qk , the proof is complete.

Note that this proof unveils the precise identity of the sets F and Ω, which are defined in terms of the
Hardy–Littlewood maximal function.

In exactly the same way as in Corollary 2.2, the Calderón–Zygmund decomposition of an integrable
function f ∈ L1(X ) as f = g + b is deduced.

We mentioned that we wish our generalised theorem to hold for vector-valued functions. The construc-
tion of the Lp spaces for such functions is nowadays standard ([4, Chapter 5]). Let us denote by LpB(X )
the Lebesgue space of Lp-integrable functions on some measure space X and taking values in the Banach
space B. This is, for 1 ≤ p <∞, set

LpB(X ) :=

{
F : X → B :

∫
X
∥F (x)∥pB dµ(x) <∞

}
,

whereas for p = ∞,

L∞B (X ) :=

{
F : X → B : ess sup

x∈X
∥F (x)∥B <∞

}
.

Additionally, denote by L(A,B) the Banach space of all linear and continuous maps between Banach
spaces A and B.

Note that what has been presented so far in this section also applies to Banach-valued functions.

In order not to scatter away from the theory, we need to upgrade Hörmander’s condition on kernel
functions as follows. In particular, note that the kernel is no longer a function, but rather a linear operator
between Banach spaces.
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Definition 3.4. Let A and B be Banach spaces. An operator kernel K on the product measure space
((X , d), Σ,µ)× ((X , d), Σ,µ) taking values in L(A,B) is said to satisfy Hörmander’s condition if

D := sup
y ,y0∈X

∫
d(x ,y)≥Cd(y ,y0)

∥K (x , y)− K (x , y0)∥L(A,B) dµ(x) <∞, (6)

for some constant C > 1.

Another important remark is that now, the kernel operator involves two entries instead of just one,
compared to the convolution operators. The reason for this is that “x − y” does not make sense in general
measure metric spaces, since they lack the vector space structure. Thus, we get around this issue by
inputting two variables x ∈ X and y ∈ X , with the understanding that the kernel is singular around x = y .

Astonishingly, the natural generalisation of Theorem 2.4 turns out to work in this setting as well!

Theorem 3.5 (See [7, Chapter 1, Theorem 3] and [4, Chapter 5, Theorem 3.4]). Let ((X , d), Σ,µ) be a
measure metric space with the doubling property. Let A, B be Banach spaces and let T be a linear operator
which is represented by

TF (x) =

∫
X
K (x , y)F (y) dµ(y),

whenever F ∈ L∞A (X ) with compact support and x /∈ supp(F ), where the vector-valued kernel K ∈ L(A,B)
is measurable in X × X and locally integrable away from the diagonal. Assume that

(i) T is bounded from LqA(X ) to LqB(X ) for a fixed 1 < q ≤ ∞: there exists Cq > 0 such that for all
F ∈ LqA(X ), ∥TF∥LqB(X ) ≤ Cq∥F∥LqA(X ), and

(ii) the operator kernel K satisfies Hörmander’s condition in (6) with constants C and D.

Then,

(a) the operator T has a bounded extension mapping LpA(X ) to LpB(X ), with 1 < p < q. Furthermore,

∥TF∥LpB(X ) ≤ Cp∥F∥LpA(X ), 1 < p < q,

for F ∈ LpA(X ) and Cp > 0 only depending on p, q, Cq, C and D.

(b) The operator T has a bounded weak-type (1, 1) extension that satisfies

λµ({x ∈ X : ∥TF (x)∥B > λ}) ≤ C1∥F∥L1A(X ), ∀λ > 0,

for F ∈ L1A(X ) and C1 > 0 only depending on q, Cq, C and D.

The proof follows the strategy of that of Theorem 2.4, just this time using Lemma 3.3 instead of
Lemma 2.1, and caring about the technical details of working in the general case.

Here is an example of operator that falls under the scope of the theory.

Example 3.6 (Smooth Littlewood–Paley square function). Let Pj be smooth Littlewood–Paley projectors.
Namely, the Pj are defined as multipliers on the Fourier side:

P̂j f (ξ) := ψ(2−jξ)f̂ (ξ), ∀ j ∈ Z.
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Here, ψ is a smooth compactly supported function, the dyadic dilations of which form a partition of unity
in frequency. This way, Pj f captures the “part” of f with frequencies around 2j .

The operator

Sf (x) :=

(∑
j∈Z

|Pj f (x)|2
) 1

2

is named smooth Littlewood–Paley square function.

First of all, we like to think of the square function as the norm of an operator acting on vector-valued
functions S : Lp(Rn) → Lp

ℓ2
(Rn): Define

P(f ) := (Pj f )j∈Z = (... ,P−1f ,P0f ,P1f , ... )

= (... , 2−nψ̌(2−1ξ) ∗ f (x), 20ψ̌(20ξ) ∗ f (x), 2nψ̌(21ξ) ∗ f (x), ... ),

which is a linear operator mapping functions to sequences of functions.1 Accordingly,

Sf (x) = ∥Pf (x)∥ℓ2(Z).

We brought the square function to the vector-valued setting. At this point, one would attempt to apply
Theorem 3.5 to Sf . Nonetheless, a direct application fails to show that Sf is bounded on Lp(Rn) for 1 <
p < ∞. It is necessary to combine Theorem 3.5 with a probabilistic trick involving Rademacher random
variables to eventually show that Sf is bounded on Lp(Rn) for 1 < p <∞.

4. Beyond the paradigm

Together with the development of the Calderón–Zygmund theory as well as its extensions, new problems
arose in the field. In particular, interest was shown in singular measure operators. The reason for this interest
relies on the thirst for understanding other appealing problems like the Kakeya problem, the Bochner–Riesz
conjecture or the Fourier restriction problem, which still remain mysterious and open. Let us give an example
in this direction of an operator that is still not completely understood.

Definition 4.1. Let f : Rn → R be a measurable function in Rn. Define the dyadic spherical maximal
function as

S̃f (x) := sup
k∈Z

∫
Sn−1

f (x − 2kω) dσ(ω), ∀ x ∈ Rn, (7)

where Sn−1 ⊂ Rn is the unit sphere, σ is the surface measure of Sn−1 and ω ∈ Sn−1 is a unit vector.

The (non-maximal) spherical means appear in the expression for the solution to the Cauchy problem
of the wave equation in odd space dimension. The interest in studying its maximal versions relies on
the availability of a standard strategy to prove pointwise convergence results of the solution to the wave
equation towards the initial datum.

The operator (7) is similar to the Hardy–Littlewood maximal function (4) in the sense that, instead of
averaging over balls, it averages over spheres. However, the surface measure of Sn−1 in Rn is a singular

1One can play the same trick with maximal functions. For instance, Mf (x) = ∥A(x , ·)f ∥L∞(R>0), where A(x , r)f denotes
the average of f on the ball centred at x of radius r .
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measure, in the sense that all of its mass is concentrated on a null n-Lebesgue measure manifold. Fur-
thermore, (7) can be seen as a convolution of a function f against a (singular) measure, but not another
function anymore. This brings obstacles to our understanding of the spherical maximal function, because
the Calderón–Zygmund theory from previous sections does not apply anymore.

In this case, the radii are discretised. It is of course of interest to take supremum over the continuum r >
0. In that case, the spherical maximal function has been understood deeply and it turns out that the
boundedness properties depend on the dimension [1, 6]. Up to the date, we know that this dyadic version
defines indeed a bounded operator on Lp(Rn). Nonetheless, we do not know whether it is weak-type (1, 1).

Theorem 4.2 (See [2]). The dyadic spherical maximal operator S̃f is bounded in Lp(Rn) for 1 < p ≤ ∞.
This is, for f ∈ Lp(Rn),

∥S̃f ∥p ≤ Cp∥f ∥p,

for some constant Cp > 0 depending on p and n.

Conjecture 4.3. The dyadic spherical maximal operator S̃f is weak-type (1, 1). So for any λ > 0 and
f ∈ L1(Rn),

λ|{x ∈ Rn : S̃f (x) > λ}| ≤ C1∥f ∥1,

for some constant C1 > 0 depending on n.
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