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Resum (CAT)
L’objectiu d’aquest treball és presentar una introducció al càlcul estocàstic. En la
primera part parlem del moviment brownià, el qual veurem que es pot pensar com
a ĺımit de passeigs aleatoris amb l’ajut del principi d’invariància de Donsker.

A continuació, presentem de manera heuŕıstica les equacions diferencials estocàs-

tiques i veiem com es poden definir de manera rigorosa amb l’ajut de la integral

estocàstica. Finalment, parlem d’existència i unicitat de solucions d’aquestes

equacions i tractem un cas senzill com és el de l’equació de Langevin.

Abstract (ENG)
The aim of this work is to provide an introduction to the subject of Stochastic
Calculus. In the first part we talk about the Brownian motion, which we will see
that it can be thought as a limit of random walks via Donsker’s Invariance Principle.

Next, we heuristically present the stochastic differential equations and see how they

can be rigorously defined with the help of the stochastic integral. Finally, we discuss

the matter of existence and uniqueness of solutions to such equations and solve a

rather simple case like the Langevin equation.
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1. Introduction

In subjects like Thermodynamics and Statistical Mechanics, in several occasions one gives a stochastic
approach of a problem even though it can be treated in a deterministic way because it usually leads to
simple and less tedious formulations and computations. For instance, if we want to study the motion of
a particle in a fluid, it is much more simpler to think that the object moves randomly due to the several
collisions that are happening in the system, rather than considering each interaction individually and try to
force brute Newton’s equations into the system.

This approach, which seems promising, comes with a couple of drawbacks. The first one is that we have
to give up on trying to determine the exact trajectory of the particle, since, even if the initial conditions
are the same, different identical particles might describe different sample paths.

The other drawback, which we shall focus our attention on, is that these kind of formulations usually
lead to equations like the Langevin equation:

dẊt

dt
= −µẊt + Ḟt , Ẋt =

dXt

dt
, (1)

where µ is some positive real constant, Xt is the position of the particle at time t ≥ 0 and Ḟt is a random
perturbation that evolves with time and satisfies some conditions like E[Ḟt ] = 0 and E[Ḟt Ḟs ] = Γδ(t − s)
(being E the expectation operator, Γ some positive real constant and δ the Dirac delta). Many physicists say
that the process X = {Xt : t ≥ 0}, where Xt is the position described by the latter equation, is a Brownian
motion. However, it is very well-known that the sample paths of such process are nowhere differentiable in
closed intervals with probability one, meaning that expressions like Ẋt (and higher order derivatives) make
no sense when they are considered pathwise, so we must find a way to define such objects (derivatives of
functions which are not differentiable in the usual sense) in order to be able to give a rigorous definition of
equations like (1). Before doing so, we first need to define what is a Brownian motion. More particularly,
we must check that we can define a mathematical object satisfying the properties that a process like the
one described by (1) should satisfy.

2. Construction of the Brownian motion

When one asks what is a Brownian motion to someone who is not familiar with the subject of stochastic
processes, the usual answer is that it is the random movement of a particle suspended in some medium
(a liquid or the air, for instance). In some other cases, the answer is that it is the movement described
by a particle that makes small, random displacements which behave similarly, even though they seem
uncorrelated no matter what the position of the object is.

But all these features are already satisfied by a random walk whose jumps are “small” (for instance, of
finite variance). Indeed, recall that a random walk is a process S = {St : t ∈ N ∪ {0}} such that S0 = 0
(this is taken arbitrarily) and

St =
t∑

j=1

Xj , t ≥ 1,

where {Xj : j ∈ N} is a sequence of i.i.d. random variables, which we shall assume, without any loss of
generality, that they are centered and with variance 0 < σ2 < ∞. So why would we need to give it another
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name? What is the difference between this processes and the so-called Brownian motion? To see this, we
first see some of the common properties that share the class of random walks with finite variance jumps:

1. The first one, which is a choice rather than some intrinsic property of the process S , is that it starts
from the origin.

2. The second one, which is a bit more interesting, is that the displacements of the process are indepen-
dent and stationary; that is, if 0 ≤ s < t ≤ s ′ < t ′, then the random variables St − Ss and St′ − Ss′

are independent and the law of St − Ss depends only on t − s. Indeed, for the independence of the
increments, one has that

St − Ss =
t∑

j=s+1

Xj , St′ − Ss′ =
t′∑

j=s′+1

Xj .

Since the random variables Xj are mutually independent, we conclude that the increments are inde-
pendent. As for the second part, the fact that the law of the increment St −Ss depends only on t− s
means, in our setting, that the law depends only on the number of variables Xj involved. Since they
are independent and identically distributed, the claim follows.

3. The last property, but not less important, is that, due to the Central Limit Theorem, for t ≥ 0 large
enough, and roughly speaking,

St ∼ N (0,σ2t).

In other words, the long term behaviour of the random variable St is described by a centered Gaussian
random variable with variance σ2t. Since it depends linearly with time, one can say that the process
is diffusive in the long term.

Therefore, it seems that, when the right scales are considered, all random walks behave in the same way
(modulo some constant). This is the content of Donsker’s Invariance Principle (Theorem 2.2), which we
state below. Before doing so, we must first define mathematically what a Brownian motion is.

Definition 2.1. A stochastic process B = {Bt : t ∈ R+} is a one-dimensional Brownian motion if:

1. B0 = 0 almost surely.

2. For any k ∈ N and any 0 ≤ t1 < · · · < tk < ∞, the random variables Bt1 ,Bt2 − Bt1 , ... ,Btk − Btk−1

are independent.

3. For any 0 ≤ s < t < ∞, the random variable Bt − Bs is normally distributed with zero mean and
variance σ2(t − s) for some constant 0 < σ < ∞.

4. The sample paths of the process are continuous everywhere with probability one.

The process B is said to be a standard Brownian motion if σ = 1.

Observe that many of the properties of the random walk are shared by the Brownian motion. An
additional property has been added, which is that the sample paths of the process are continuous with
probability one, however, this is not so important, since, if the first three properties are satisfied, one can
find a version of the process satisfying the fourth one.
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In the case of the random walk, we provided a class of processes (which were determined by the
sequence of random variables {Xj : j ∈ N}) that satisfied the first three properties. However, the same
cannot be done in the case of the Brownian motion, which can be thought as a continuous time version
of the random walk. Hence, we have to first check that such process exists. This is, as well, part of the
content of Donsker’s Theorem, which we now state.

Theorem 2.2 (Donsker’s Invariance Principle). Let {Xj : j ∈ N} be a sequence of independent and
identically distributed centered random variables with unitary variance. Then the random (continuous)
functions

Y
(n)
t =

1

σ
√
n
S̃nt , 0 ≤ t ≤ 1,

where

S̃t =

[t]∑
j=1

Xj + (t − [t])X[t]+1, S̃0 = 0,

converge weakly to a standard one-dimensional Brownian motion, where [t] denotes the integer part of t.

In other words, if Pn are the laws of the random functions Y
(n)
t , then there is a probability measure P (the

Wiener measure) over the space of real continuous functions on [0, 1], C [0, 1], fulfilling the properties from
Definition 2.1 and such that Pn(G ) → P(G ) for any Borel set G of C [0, 1] with P(∂G ) = 0, being ∂G the
boundary of G.

The process S̃ , which resembles quite a lot S , is the linear interpolation of the latter and hence, a
process with continuous sample paths.

The proof of this result (which is a result of convergence of probability measures), relies, mainly, on
Prohorov’s Theorem, which gives a characterization of the family of laws induced by the family of random

functions {Y (n) : n ∈ N}, with Y (n) = {Y (n)
t : t ∈ [0, 1]} in terms of the topological properties of the

space C [0, 1], and the fact that the finite dimensional distributions of a continuous stochastic process
determine its law (we refer to [1, Theorems 5.1, 5.2 and p. 84] for a proof of these claims). A proof of
Theorem 2.2 for a particular case of random walk is given in [2], and a general proof can be found in [1,
Section 8] as well.

With this, we have given an answer to the first of the two questions and now can address the problem
of defining objects like (1).

3. Stochastic differential equations

Before trying to define the concept of solution to equations like (1), which are known as stochastic differ-
ential equations (SDEs), we shall first see how one gets to the point of having to consider such objects.

To do so, let us consider an ordinary differential equation (ODE) of the form

dXt = f (t,Xt) dt, t ≥ 0, (2)

modeling some phenomena which we are interested in and where f : R+ × R → R is some good enough
function.
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In some cases, the description given by the ODE might be a bit too simple or might not take into
account some factors which might have been neglected due to a simplification or due to the fact that
we cannot easily control them. To solve this, one can discretize the ODE and add a random perturbation
which might evolve with time, say V = {Vt : t ∈ R+}, leading to

Xt+∆t − Xt = f (t,Xt)∆t + g(t,Xt)∆Vt , ∆Vt = Vt+∆t − Vt ,

where g : R+ × R → R is some function modelling the intensity of the random perturbation. Usually,
this introduced noise accounts for the superposition of several small (of finite variance) factors which
cannot be controlled. Hence, and due to the Central Limit Theorem, we can assume that the law of the
increments ∆Vt is normally distributed with vanishing mean (since the mean trajectories should coincide
with the one modeled by (2)) and with variance ∆t. The linear dependence on time in the variance is
chosen because, in most scenarios, the observed perturbation can be said to be diffusive.

One can assume, as well, that the random perturbations in discrete time, ∆V0, ∆V∆t , ... are uncorre-
lated or independent since they are supposed to be rapidly varying and hence, what happens in one time
interval might not significantly interfere on what happens in some other time interval.

With all this, one concludes that the best choice for the process V is a standard Brownian motion. The
only think left to do is to take the limit ∆t → 0 to obtain, formally speaking,

dXt = f (t,Xt) dt + g(t,Xt) dBt .

However, and as mentioned in the introduction, the differential dBt makes no sense as a classical one. To
solve this problem, one writes the SDE in its integral form

Xt = X0 +

∫ t

0
f (s,Xs) ds +

∫ t

0
g(s,Xs) dBs . (3)

So the only thing left to do is to give a meaning to expressions
∫ t
0 Xs dBs (stochastic integral) for a suitable

class of stochastic processes X = {Xt : t ∈ R+} to solve the problem.

3.1 Stochastic integrals

The first idea to approach such integrals is to use the already developed theory of integration with respect
to functions (Lebesgue–Stieltjes integral) to define such integrals pathwise. However, the fact that the
sample paths of the Brownian motion are of unbounded variation preclude this option.

For this purpose, a new theory of integration needs to be developed. As in the case of the Riemann–
Stieltjes integral, we will be considering sums of the form

n−1∑
j=0

Xt∗j
(Btj+1 − Btj ), (4)

where 0 = t0 < · · · < tn = T is a partition of a finite time interval [0,T ] and where t∗j ∈ [tj , tj+1),
j = 0, ... , n − 1. Ideally, one would want the above sums to converge to the same limit (this limit might
be in probability or in mean square, for instance) no matter what choice of t∗j is made. Unfortunately, this
is not the case, leading to different definitions of the stochastic integral depending on the choice of the
midpoints t∗j , j = 0, ... , n−1. In this work, we will be considering the left endpoint approximations (t∗j = tj),
which lead to the Itô integral.
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As one might expect, this integral will not be defined for any process X . Returning to the discretization
of the SDE, we have that the information we have on the process X at time t +∆t can be determined by
the information we have on Xt and the information we have on the driving noise (in our case, the Brownian
motion) at time t +∆t. At the same time, the information we have of Xt depends on the information one
has on Xt−∆t and so on. All in all, we see that we can infer the information of Xt at time t by knowing
the entire information of the driving process B until that time. In particular, the information we have on Xt

does not depend on the information we have at time s for s > t, so the process X cannot see into the
future. In this case, we say that the process X must be adapted to the filtration generated by the driving
noise (the information we have on Xt depends on the history of the noise until that time).

Another natural hypothesis on the process X is that it must be integrable in some sense so that we
can talk about its integral. More precisely, we will require that

||X ||2 := E
[∫ T

0
X 2
s ds

]
< ∞.

For this integral to be well defined, we will require, as well, the process X , thought as a map X : Ω×[0,T ] →
R, (ω, t) 7→ X (ω, t) = Xt(ω), where Ω is the sample space, to be jointly measurable with respect to the
corresponding σ-fields.

When all these hypothesis are fulfilled, one can show that integrals like
∫ t
0 Xs dBs can be defined as an

L2(Ω)-limit (mean square limit) of Riemann–Stieltjes sums. To show this, and as it is customary in this
type of constructions, one first defines a class of simple functions of the form

ϕ(ω, t) = ϕt(ω) =
n−1∑
j=0

ej(ω)I[tj ,tj+1)(t), (5)

where {ej : j = 0, ... , n−1} are bounded random variables such that the information we have on ej depends
only on the history of the Brownian motion (the driving noise) until time tj and 0 = t0 < · · · < tn = T .
For such functions, the integral with respect to the Brownian motion is defined as the sum (4), where Xt∗j
must be replaced by ej .

Next, one checks that || · || defines a norm on the space of processes X satisfying the previously
mentioned hypothesis and that such normed space (from now on, the space of Itô integrable processes) is
complete.

Finally, one shows that any process X in the normed space can be approximated by simple functions (5),

which allows us to define the integral
∫ T
0 Xs dBs as an L2(Ω)-limit of integrals of simple processes. To justify

this last step, a crucial result for step functions (which also holds for general Itô integrable processes X ) is
needed. We shall state the result, as it will be useful in the future for other purposes.

Theorem 3.1 (Isometry formula). For any Itô integrable process X , we have

E

[(∫ T

0
Xs dBs

)2
]
= E

[∫ T

0
X 2
s ds

]
.

As its name says, the previous result asserts that the stochastic integral with respect to the Brownian
motion establishes an isometry between the space of square integrable random variables, L2(Ω), and the
space of Itô integrable functions. For a detailed construction of the stochastic integral, we refer to Chapter 3
of [3] and [4].
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Another important feature of this integral is that, when X is a deterministic Itô integrable process (that
is, the map X : Ω× [0,T ] is constant in the first argument), one has that the process I = {It : t ∈ [0,T ]}
defined by It =

∫ t
0 Xs dBs is a Gaussian process. More precisely,

Theorem 3.2. If X = f = {ft : t ∈ [0,T ]} is a deterministic Itô integrable process, then I is a centered
Gaussian process with independent increments such that, for each 0 ≤ s < t ≤ T,

It − Is =

∫ t

s
fs dBs ∼ N

(
0,

∫ t

s
f 2u du

)
.

That is, the increment is normally distributed with zero mean and variance
∫ t
s f 2u du.

With this, the task of giving a meaning to expressions like (3) has been fulfilled. However, we have not
provided any practical way of computing stochastic integrals. This will be the purpose of the Itô formula
(see [3, Chapter 3] again or [4, Chapter 4] for a proof of this result), which can be thought as a chain rule
or as an integration by parts formula, depending on whether you consider the differential or integral form.

Theorem 3.3 (Itô formula). Let X = {Xtt ∈ [0,T ]} be a process defined by

dXt = ft dt + gt dBt

or, in integral form,

Xt = X0 +

∫ t

0
fs ds +

∫ t

0
gs dBs ,

where f = {ft : t ∈ [0,T ]} is a process integrable with respect to the Lebesgue measure with probability
one and g = {gt : t ∈ [0,T ]} is an Itô integrable process, and let F : [0,T ] × R, (t, x) 7→ F (t, x)
be a C1,2 function (continuously differentiable with respect to the first argument and twice continuously
differentiable with respect to the second one). Then, if Yt = F (t,Xt),

dYt =
∂F

∂t
(t,Xt) dt +

∂F

∂x
(t,Xt) dXt +

1

2

∂2F

∂x2
(t,Xt)(dXt)

2

or, in integral form,

Yt = F (0,X0) +

∫ t

0

∂F

∂s
(s,Xs) ds +

∫ t

0

∂F

∂x
(s,Xs) dXs +

1

2

∫ t

0

∂2F

∂x2
(s,Xs)(dXs)

2.

In the previous theorem, the differentials dXt and (dXt)
2 can be treated as if they were finite real

quantities by using the rules dt · dt = dt · dBt = dBt · dt = 0 and (dBt)
2 = dt. Then, for instance, we

have that ∫ t

0

∂F

∂x
(s,Xs) dXs =

∫ t

0

∂F

∂x
(s,Xs)fs ds +

∫ t

0

∂F

∂x
(s,Xs)gs dBs ,

and ∫ t

0

∂2F

∂x2
(s,Xs)(dXs)

2 =

∫ t

0

∂2F

∂x2
(s,Xs)g

2
s ds.

With this, we can now begin to study stochastic differential equations.
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3.2 An existence and uniqueness result

The first thing one must check when one studies equations like (3) (or its differential form), is to make sure
that there is at least one solution and, if possible, to see that it is unique. It turns out that, under similar
hypothesis to the ones used in Picard’s Theorem on the processes g and f , one can show that there is a
unique stochastic process X satisfying equation (3). However, the uniqueness is understood in the sense
that any other process satisfying the SDE is a modification of our solution.

More particularly, we require f and g to be Lipschitz functions and of linear growth with respect to the
second variable for each t ∈ [0,T ]:

|f (t, x)− f (t, y)|+ |g(t, x)− g(t, y)| ≤ C |x − y |, |f (t, x)|+ |g(t, x)| ≤ D(1 + |x |),

for some positive constants C and D, and the initial condition X0 to be deterministic (this last hypothesis can
be relaxed by considering any square integrable initial condition satisfying some measurability properties).
For a precise statement of the result and a proof, we refer to [4, Theorem 5.2.1].

With all this, we can finally study equations like the Langevin one, equation (1), when the noise Ḟt is
identified with the differential of the Brownian motion. In the following section we treat a particular case
of such equations and compute some observable quantities.

3.3 The case of the Langevin equation

Let us consider equation (1) when Ḟt dt = σ dBt for some real constant σ. That is, we consider the equation

dẊt = −µẊt dt + σ dBt ,

for some positive constant µ and some real constant σ. The theorem of existence and uniqueness of
solutions tells us that, for each T ≥ 0 and any deterministic initial condition Ẋ0, there is a unique process
(modulo modifications) Ẋ = {Ẋt : t ∈ [0,T ]} satisfying the above equation. To give an explicit formula
for Ẋt , we multiply the SDE by the integrating factor eµt , which leads to

eµt dẊt + µeµtẊt dt = eµtσ dBt .

The usual product rule would tell us that the left-hand side can be identified with d(eµtẊt). However,
this might not be true in the context of stochastic processes. To make sure that this holds, we apply Itô’s
formula to the function F (t, x) = xeµt , for which we have

∂F

∂t
(t, x) = µxeµt ,

∂F

∂x
(t, x) = eµt ,

∂2F

∂x2
(t, x) = 0.

So, indeed, we have that
d(eµtẊt) = eµt dẊt + µeµtẊt dt = eµtσ dBt

or, in integral form,

Ẋte
µt = Ẋ0 + σ

∫ t

0
eµs dBs .

Which simplifies to

Ẋt = Ẋ0e
−µt + σ

∫ t

0
e−µ(t−s) dBs .
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With this and other results like the isometry formula, we can compute some observable quantities like the
mean, the variance and the covariance. A straightforward computation using the isometry formula shows
that

E[Ẋt ] = Ẋ0e
−µt , E[Ẋ 2

t ] = Ẋ 2
0 e

−2µt +
σ2

2µ
(1− e−2µt), Var(Ẋt) =

σ2

2µ
(1− e−2µt). (6)

Finally, for 0 ≤ s < t, we have, by letting It =
∫ t
0 eµu dBu (observe that the stochastic integral involved is

the one of a deterministic function, so we are under the hypothesis of Theorem 3.2),

Cov(Ẋt , Ẋs) = E[(Ẋt − E[Ẋt ])(Ẋs − E[Ẋs ])]

= σ2e−µ(t+s)E[It Is ]

= σ2e−µ(t+s)E[(It − Is)Is ] + σ2e−µ(t+s)E[I 2s ]

= σ2e−µ(t+s)E[It − Is ]E[Is ] + σ2e−µ(t+s)E[I 2s ]

= σ2e−µ(t+s)

∫ s

0
e2µu du

=
σ2

2µ
(eµ(s−t) − e−µ(t+s)),

where we have used Theorem 3.2 and the isometry formula. Hence, for any s, t ∈ [0,T ],

Cov(Ẋt , Ẋs) =
σ2

2µ
(e−µ|t−s| − e−µ(t+s)). (7)

Moreover, Theorem 3.2 tells us that the process Ẋ is Gaussian with mean and covariance functions given
by the first term in (6) and (7), respectively, and that, for each t ∈ [0,T ], Ẋt is a normal random variable
with mean and variance given by the first and last terms in (6).
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