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Resum (CAT)
Els partial cube-menors són una analogia de la noció de menors als partial cubes.

En aquest article determinem el conjunt de pc-menors de les classes dels partial

cubes outerplanars i els partial cubes sèrie-paral.lel. Aquest és el primer resultat

d’aquest tipus per als partial cubes d’una classe tancada per menors.

Abstract (ENG)
Partial cube-minors are an analogue of graph minors in partial cubes. We determine

the set of forbidden partial cube minors of the classes of outerplanar and series-

parallel partial cubes. This is the first result of this type for the partial cubes in a

minor closed graph class.
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1. Introduction

Denote by Qd the hypercube graph of dimension d , i.e., its vertices are the elements of {0, 1}d and two
vertices are adjacent if they differ in exactly one entry. Partial cubes are the graphs that admit an isometric
embedding into a hypercube; see Figure 1 for examples. They were introduced by Graham and Pollak [19]
in the study of interconnection networks, form an important graph class in media theory [18], frequently
appear in chemical graph theory [17, 20], and quoting [21], present one of the central and most studied
classes in Metric Graph Theory. Some classes of partial cubes that are studied within Metric Graph Theory
include median graphs [4], bipartite cellular graphs [3], hypercellular graphs [12], Pasch graphs [11], netlike
partial cubes [24], and two-dimensional partial cubes [13]. Partial cubes arise also from geometry as graphs
of regions of hyperplane arrangements in Rd [6], tope graphs of oriented matroids (OMs) [7], 1-skeleta of
CAT(0) cube complexes [4], and more generally: tope graphs of complexes of oriented matroids [5].

An interesting structural feature of partial cubes is that they admit a natural minor-relation (pc-minors
for short) consisting of restrictions and contractions, which are special forms of deletion and contraction
in the graph. Many important classes of partial cubes are closed under taking pc-minors. Analogously to
graph minors, given a pc-minor closed class there exists a list of excluded pc-minors of the class. Contrary
to the situation of graph minors [25] for pc-minors this list might be infinite. If the list is finite, this also
allows for a polynomial time recognition algorithm of the class [23]. Even if the list is infinite, determining
it can yield insight into the class. All excluded minors are known for tope graphs of complexes of oriented
matroids [23], two-dimensional partial cubes [13], median graphs, bipartite cellular graphs, hypercellular
graphs, and Pasch graphs [12]. See [22, Chap. 7.5] for more related material. Since pc-minors are special
graph minors, one source for pc-minor closed classes of partial cubes is the class of partial cubes in a
minor-closed graph class. In the present paper we analyze the first non-trivial instance of such a class:
partial cubes that are outerplanar partial cubes, i.e., they admit a crossing-free drawing in the plane such
that all vertices lie on the outer face. We give a full description of its infinite list of excluded pc-minors
(Theorem 4.21). Further, we obtain the list for series-parallel partial cubes (Theorem 4.22). Our proof uses
the excluded minors for these classes [9] and we discuss in Section 5 possible extensions to other pc-minor
closed classes. This short version omits some proofs, which can be found in [26].

2. Partial cubes
All graphs G = (V ,E ) occurring in this paper are simple, connected, and finite. The distance d(u, v) :=
dG (u, v) between two vertices u and v is the length of a shortest (u, v)-path, and the interval I (u, v)
between u and v consists of all vertices on shortest (u, v)-paths: I (u, v) := {x ∈ V : d(u, x) + d(x , v) =
d(u, v)}. If this causes no confusion, we will denote the distance function of G by d and not dG . An
induced subgraph of G is called convex if it includes the interval of G between any two of its vertices.
An induced subgraph H of G is isometric if the distance between any pair of vertices in H is the same as
that in G . In particular, convex subgraphs are isometric. A graph G = (V ,E ) is isometrically embeddable
into a graph H = (W ,F ) if there exists a mapping φ → V → W such that dH(φ(u),φ(v)) = dG (u, v)
for all vertices u, v ∈ V , i.e., φ(G ) is an isometric subgraph of H. A graph G is called a partial cube if
it admits an isometric embedding into the hypercube Qd . From now on, we will suppose that a partial
cube G = (V ,E ) is an isometric subgraph of the hypercube Qd , i.e., we will identify G with its image
under the isometric embedding and its vertices will often be denoted as elements of {0, 1}d . The minimal d
such that G embeds isometrically into Qd is called the (isometric) dimension of G . The edges of G are
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partitioned into so-called Θ-classes, i.e., eΘe ′ iff both edges correspond to a switch in the same coordinate
of Qd . Denote by E = {Ei : i ∈ [d ]} the equivalence classes of Θ. Sometimes we will refer to Θ as
a function Θ: E (G ) → E . The Θ-classes can be characterized intrinsically and do not depend on the
embedding [16].

2.1 Partial cube minors

Let G = (V ,E ) be an isometric subgraph of the hypercube Qd . Given f ∈ [d ], an elementary restriction
consists in taking one of the two connected components ρf −(G ) and ρf +(G ) of G \ Ef . These graphs are
isometric subgraphs of the hypercube Q([d ] \ {f }). Now applying twice the elementary restriction to two
different coordinates f , g , independently of the order of f and g , we will obtain one of the four (possibly
empty) subgraphs. Since the intersection of convex subsets is convex, each of these four subgraphs is convex
in G and consequently induces an isometric subgraph of the hypercube Q([d ] \ {f , g}). More generally, a

restriction is a convex subgraph ρA(G ) of G , where A ∈ {+,−, 0}[d ], obtained by iteratively applying ρeAe
for all Ae ̸= 0. The following is well-known:

Lemma 2.1 ([1, 2]). The set of restrictions of a partial cube G coincides with its set of convex subgraphs.
In particular, the class of partial cubes is closed under taking restrictions.

For f ∈ [d ], we say that the graph G/Ef obtained from G by contracting the edges of the equivalence
class Ef is an (f -)contraction of G . For a vertex v of G , we will denote by πf (v) the image of v under
the f -contraction in G/Ef , i.e., if uv is an edge of Ef , then πf (u) = πf (v), otherwise πf (u) ̸= πf (v).
We will apply πf to subsets S ⊂ V , by setting πf (S) := {πf (v) : v ∈ S}. In particular, we denote the
f -contraction of G by πf (G ). It is well-known and follows from the proof of the first part of [10, Thm. 3]
that πf (G ) is an isometric subgraph of Q([d ] \ {f }). Since edge contractions in graphs commute, i.e., the
resulting graph does not depend on the order in which a set of edges is contracted, we have:

Lemma 2.2. Contractions commute in partial cubes, i.e., if f , g ∈ [d ] and f ̸= g, then πg (πf (G )) =
πf (πg (G )). Moreover, the class of partial cubes is closed under contractions.

Consequently, for a set A ⊂ [d ], we can denote by πA(G ) the isometric subgraph of Q([d ]\A) obtained
from G by contracting the classes A ⊂ [d ] in G . Finally, we have:

Lemma 2.3 ([12]). Contractions and restrictions commute in partial cubes, i.e., if f , g ∈ [d ] and f ̸= g,
then ρg+(πf (G )) = πf (ρg+(G )).

The previous lemmas show that any set of restrictions and any set of contractions of a partial cube G
provide the same result, independently of the order in which we perform the restrictions and contractions.
The resulting graph G ′ is also a partial cube, and G ′ is called a partial cube-minor (or pc-minor) of G .

2.2 Expansions and Cartesian products

A partial cube G is an expansion of a partial cube G ′ if G ′ = πf (G ) for some equivalence class f of E(G ).
More generally, let G ′ be a graph containing two isometric subgraphs G ′

1 and G ′
2 such that G ′ = G ′

1 ∪ G ′
2,

there are no edges from G ′
1 \ G ′

2 to G ′
2 \ G ′

1, and G ′
0 := G ′

1 ∩ G ′
2 is nonempty. A graph G is an isometric

expansion of G ′ with respect to G ′
0 if G is obtained from G ′ by replacing each vertex v of G ′

1 by a vertex v1
and each vertex v of G ′

2 by a vertex v2 such that ui and vi , i = 1, 2, are adjacent in G if and only if u
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and v are adjacent vertices of G ′
i and v1v2 is an edge of G if and only if v is a vertex of G ′

0. Every partial
cube can be obtained from a single vertex by a sequence of expansions [10].

The Cartesian product F1□F2 of two graphs F1 = (V1,E1) and F2 = (V2,E2) is the graph defined
on V1×V2 with an edge (u, u′)(v , v ′) if and only if u = v and u′v ′ ∈ E2 or u′ = v ′ and uv ∈ E1. Cartesian
products of partial cubes are partial cubes. It follows immediately from the definitions that:

Lemma 2.4. A partial cube G is an expansion of the partial cube G ′ if and only if G ′ ⊆ G ⊆ G ′□K2 are
isometric subgraphs.

3. The excluded minors

A graph is outerplanar if it admits a planar drawing for which all vertices lie on the outer face of the
drawing. This class is minor-closed hence also outerplanar partial cubes have a set of excluded pc-minors,
which we will denote by Ω. Denote by L := K1,3□K2 the book graph and by n ≥ 3, Gn is the gear graph,
i.e., the graph formed by 2n+ 1 vertices: an even exterior cycle of length 2n and a center vertex adjacent
to one bipartition class of the cycle.

Q3 L Gn

G3 G4 G5

Figure 1: The cube, the book graph, and the infinite family of gear graphs.

It is easy to see that all the partial cubes in Figure 1 are pc-minor minimal non-outerplanar. Our main
result is that they are the only such graphs. The proof will occupy the rest of this paper.

4. Main proof

4.1 Preparation

Before we get into the proof, we need some lemmas whose proofs are omitted in this short version.

Lemma 4.1. If G ∈ Ω, then G is planar.

Let G be a graph, let F be a set of edges, let H ⊆ G be a subdivision of a certain graph K . We say
that F destroys H if H/F is not a subdivision of K . We say that F destroys K if G/F does not contain
any subdivision of K as a subgraph.
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Lemma 4.2. Let G ∈ Ω, let Ei be a Θ-class. Then Ei destroys K4 or K2,3. In particular, if H ⊆ G is a
subdivision of K4 or K2,3, then Ei destroys H.

If H ⊆ G is a subgraph, we refer to the induced subgraph by V (H) as the induced subgraph by H and
denote it as G [H].

Lemma 4.3. Let G be a graph. Let H ⊆ G be a subdivision of a certain graph K. Let F be a matching.
Then F\E (G [H]) does not destroy H.

If H ⊆ G is a subgraph and F is a set of edges of G , then we denote F [H] := F ∩ E (G [H]).

Lemma 4.4. Let G ∈ Ω. Let H ⊆ G be a subdivision of K4 or K2,3. Let Ei be a Θ-class. Then Ei [H] ̸= ∅.

4.2 Three lemmas

Lemma 4.5. Let G be a partial cube containing a subdivision of K2,3 or K4 such that no pc-minor of G
does. If dim(G ) ≤ 3, then G = G3 or G = Q3.

Proof. Partial cubes of dimension 0, 1, and 2 are all outerplanar. For dimension 3, note that any pc-minor
of G will be a subgraph of Q2, thus outerplanar. Among all partial cubes of dimension 3, the only ones
containing a subdivision of K2,3 or K4 are G3 and Q3.

From now we can restrict to partial cubes of isometric dimension at least 4. We start with those
containing only a subdivision of K2,3.

Lemma 4.6. Let G be a partial cube with dim(G ) ≥ 4 containing a subdivision of K2,3 but none of K4

such that no pc-minor of G contains a subdivision of K2,3. Then G = L.

Proof. Among all subdivisions of K2,3 contained in G , we choose a K2,3-subdivision H contained in G with
the minimum number of vertices. Let a, b, c , d , z be the original vertices of K2,3, with degH(a) = 3 =
degH(z). H consists in three disjoint paths abz , acz , and adz called main paths. Each one of these paths
contains at least two edges in two different Θ-classes. We can assume that b, c , d are the first vertex
in each main path respectively, i.e., ab, ac, ad ∈ E (H). Let E1, E2, E3 be Θ-classes such that ab ∈ E1,
ac ∈ E2, ad ∈ E3.

Claim 4.7. Let P be a main path. Let u, v ∈ P such that {u, v} ≠ {a, z}. If uv /∈ E (H), then uv /∈ E (G ).

Proof. Assume uv /∈ E (H) and uv ∈ E (G ). Since u, v ∈ P, there is a vertex w ∈ P between u and v such
that w /∈ Q := auvz . Since {u, v} ̸= {a, z}, ℓ(Q) ≥ 2. Also, w /∈ Q implies that ℓ(Q) < ℓ(P). Let H ′ be
the graph built from H and replacing P for Q. H ′ is a subdivision of K2,3 with less vertices than H, which
is a contradiction to the fact that H is minimal in vertices (Figure 2).

We conclude that there are no induced edges between vertices contained in the same main path, except
maybe between a and z .

Claim 4.8. Let u, v ∈ H, vertices from two different main paths. Any path in G between u and v goes
through a or z . In particular, uv /∈ E (G ).
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Proof. Let P, Q be two main paths such that u ∈ P, v ∈ Q. Let R be a path between u and v such that
a, z /∈ R. Note that u ∈ P\{a, z}, v ∈ Q\{a, z} are two disjoint paths. Assume that P ∩ R = {u} and
Q ∩ R = {v}. Now a K4-subdivision is formed, picking as original vertices a, u, v , z and six main paths,
where R is one of them and the others paths are contained in H (Figure 2).

a

b c d

u

w

v z

a

b c d

u

w

v z

a

b c d

u

z

v

a

u

z

v

Figure 2: Claims 4.7 and 4.8: If uv exists, then: (left) there is a K2,3-subdivision not containing w or
(right) there is a K4-subdivision.

Claims 4.7 and 4.8 imply that az will be (if it exists) the only edge in G induced by H.

Claim 4.9. a and z differ in only one coordinate, i.e., az ∈ E (G ).

Proof. Assume a and z differ in at least two coordinates, i.e., a = (0, 0, ... ) and z = (1, 1, ... ). Let E1, E2

be the Θ-classes corresponding to the first two coordinates. Since the three main paths are disjoint, there
exist e1b, e1c , e1d ∈ E1 and e2b, e2c , e2d ∈ E2 such that e1b, e2b ∈ abz , e1c , e2c ∈ acz , e1d , e2d ∈ adz . Then
there exist three vertices ub ∈ abz , uc ∈ acz , ud ∈ adz such that ui is between e1i and e2i in each main
path (Figure 3). Then each ui has its first two coordinates either (0, 1) or (1, 0). In each eight combinations,
at least two vertices have the same two first coordinates. Assume ub = (0, 1, ... ), uc = (0, 1, ... ). Now,
let P be a short (ub, uc)-path. Any vertex v ∈ P has got to have the same first two coordinates, i.e.,
v = (0, 1, ... ). Then, neither a nor z can be in P. This is a contradiction with Claim 4.8. Then, a and z
differ in only one coordinate, i.e., az ∈ E (G ). We can assume from now on that az ∈ E4.

a = (0, 0, ... )

b c d

e1b
e1c

e2duc

e2cub ud

e1de2b

z = (1, 1, ... )

ub = (1, 0, ... )

uc = (1, 0, ... )

ud = (0, 1, ... )

Figure 3: Claim 4.9: a short (ub, uc)-path cannot pass through a nor z .

Claim 4.10. Let P be a main path. Then, ℓ(P) = 3 and Θ(P) = (Ei ,E4,Ei ), where Ei is the Θ-class
corresponding to the first edge of P starting from a, i.e., i ∈ [3].

Proof. P ∪ {az} forms a cycle of length 4 or greater. Thus, this cycle has at least two edges in Ei and E4.
The other main paths Q, R already have three edges not contained in Ei . Then, πi (Q) and πi (R) do still
have length greater than 2. Lemma 4.2 ensures that each Θ-class destroys H. Then, since Ei destroys H,
we get ℓ(πi (P)) < 2. Thus, ℓ(πi (P)) = 1 and Θ(P) = (Ei ,E4,Ei ).
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From Claim 4.10 we get to fully determine H. It turns out that G [H] = H ∪ {az} = L.

Claim 4.11. dim(G ) = 4.

Proof. Thanks to Lemma 4.4, all Θ-classes have to contain an edge in G [H], but G [H] = L ⊆ Q4.

Still, we have not fully determined V (G ) and there could be a vertex v ∈ V (G )\V (H).

Claim 4.12. V (H) = V (G ).

Proof. G is a partial cube, then G is connected. If V (G )\V (H) ̸= ∅, then there is a vertex u ∈ V (G )\V (H),
adjacent to some v ∈ V (H)\{a, z}. Assume v = b. Then either bu ∈ E2 or bu ∈ E3. Assume the first
option. G is a partial cube implies cu ∈ E (G ) and Θ(cu) = E1. But that is a contradiction with Claim 4.8.
Then V (G ) = V (H).

Finally, V (G ) = V (H) and G [H] = L imply that G = L, which finishes the proof of Lemma 4.6.

Lemma 4.13. Let G be a partial cube with dim(G ) = n ≥ 4 containing a subdivision of K4 such that no
pc-minor of G contains a subdivision of Kf . Then G = Gn.

Proof. Among all subdivisions of K4 in G , we choose a subdivision H with the minimum number of
vertices. Let a, b, c, d be the original vertices of K4. The six edges of K4 are called main paths in H. Let
e ∈ E (G [H]). Then up to symmetry e has to be one of the following types (Figure 4):

(i) e1 = u1v1 ∈ E (H), u1, v1 ∈ {a, b, c , d} are original vertices.

(ii) e2 = u2v2 ∈ E (H), u2 ∈ {a, b, c , d} is an original vertex and v2 is a subdivision vertex of a main
path containing u2.

(iii) e3 = u3v3 ∈ E (H), u3, v3 are two subdivision vertices in the same main path.

(iv) e4 = u4v4 /∈ E (H), u4 ∈ {a, b, c , d} is an original vertex and v4 is a subdivision vertex of a main
path that does not contain u4.

(v) e5 = u5v5 /∈ E (H), u5, v5 ∈ {a, b, c , d} are original vertices.

(vi) e6 = u6v6 /∈ E (H), u6 ∈ {a, b, c , d} is an original vertex and v6 is a subdivision vertex of a main
path containing u6.

(vii) e7 = u7v7 /∈ E (H), u7, v7 are two subdivision vertices of the same main path.

(viii) e8 = u8v8 /∈ E (H), u8, v8 are two subdivision vertices of two adjacent main paths.

(ix) e9 = u9v9 /∈ E (H), u9, v9 are two subdivision vertices of two opposite main paths.

e1

e2

e3

e6

e7 e5

e4

e8

e9

Figure 4: The nine different types of induced edges by H. On the left, the edges contained in H, on the
right, the edges not contained in H.
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Claim 4.14. Types (v), (vi), (vii), (viii), (ix) edges cannot exist (Figure 5).

Proof. (v) Assume e5 = ab /∈ E (H). The main path ab cannot be a single edge. Thus, ℓ(ab) ≥ 2. Then,
there exists a vertex w ∈ ab, u ̸= a, b. Then, a K4-subdivision H ′ is formed with the same original vertices a,
b, c, d and the same main paths but replacing awb for the edge e5 = ab. H ′ contains less vertices than H,
contradiction.

(vi) Assume e6 = au /∈ E (H). a and u are not adjacent in H. There is a vertex w ∈ ab between a and u.
Then, there is a subdivision H ′ of K4 with the same original vertices a, b, c, d and the same main paths
but replacing awub for the path {au} ∪ ub. H ′ contains less vertices than H, contradiction.

(vii) Assume e7 = uv /∈ E (H), u, v ∈ ab. There exists a vertex w ∈ ab between u and v . Then there is
another subdivision H ′ with the same original vertices a, b, c , d and the same main paths but replacing
auwvb for the path au ∪ {uv} ∪ vb. H ′ contains less vertices than H, contradiction.

(viii) Assume e8 = uv /∈ E (H), u ∈ ab and v ∈ ac are two subdivision vertices. There is a cycle going
through a, u, v and at least a fourth vertex w ∈ H (due to G being a partial cube). Assume w ∈ au ⊂ ab.
Then there is another subdivision H ′ with original vertices v , b, c , d and the three main paths containing
v being: vd , va ∪ ac, bu ∪ {uv}. H ′ contains less vertices than H, contradiction.

(ix) Even though we can find a subdivision of K4 that has less vertices than H, there is another argument
we can do. Assume e9 = uv , u ∈ ab, v ∈ cd . Then, H ∪ {uv} = K3,3, where the bipartition is V (K3,3) =
{a, b, v} ∪ {c , d , u}. That means G is not planar, which is a contradiction to Lemma 4.1.

(v) a

w

d

b c

(vi) a
w

u
d

b c

(vii) a

u

w
v

d

b c

(viii) a

u v
w

d

b c

(ix) a

u

v
d

b c

Figure 5: Representation of cases (v), (vi), (vii), (viii), (ix). In grey, the subdivisions of K4 or K3,3 deduced
from the hypothesis of each case.

Now we have that G [H]\H can only have edges of type (iv), which are called mixed edges. Edges of
type (i) are called original edges and edges of types (ii) and (iii) are called subdivision edges.

Claim 4.15. Let Ei be a Θ-class. Ei contains an original edge o mixed edge (types (i) o (iv)).

Proof. Thanks to Lemma 4.4, we know Ei [H] := Ei ∩ E (G [H]) ̸= ∅, since G ∈ Ω and H is a subdivision
of K4. Assume every edge in Ei [H] is type (ii) or (iii), i.e., they are all subdivision edges. Contract all edges
of Ei\Ei [H] (edges in Ei not induced by H). Lemma 4.3 implies H = H/(Ei\Ei [H]), i.e., H is not affected
by the contraction of Ei\Ei [H]. Now, if we contract Ei [H], we will have contracted all edges of Ei . Due
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to Lemma 4.2, πi (G ) will not contain any subdivision of K4. However, we are assuming all edges in Ei [H]
are subdivision edges, i.e., all edges in Ei [H] are contained inside the main paths. There cannot be any
main path containing only edges in Ei (except if the main path is a single edge, but in that case it would
be an original edge). Then πi (H) still contains the same main paths contracted, but never until being
fully contracted. Then, πi (G ) contains πi (H) as a subgraph, which is still a subdivision of K4. That is a
contradiction which means that Ei has to have an original edge or a mixed edge (types (i) and (iv)).

Claim 4.16. G contains at least one mixed edge (type (iv)).

Proof. We proof G cannot have more than three original edges. Since n := dim(G ) ≥ 4, there is at least
one Θ-class containing mixed edge. Assume E1, E2, E3 are Θ-classes each one containing an original edge.
Except symmetries, they can only form a C3, P3 or K1,3 inside K4. Let E4 be a Θ-class. A fourth original
edge in E4 would form a C4 or a C3+1P1 together with the other three. A C4 in a partial cube cannot have
four different Θ-classes and a C3 +1 P1 has an odd cycle, thus, E4 cannot contain an original edge. Then,
Claim 4.15 implies that E4 necessarily contains a mixed edge. Moreover, G contains at least n − 3 mixed
edges.

Claim 4.17. All mixed edges are incident to the same original vertex.

Proof. Let e, f ∈ E (G ) be two mixed edges incident to two different originals vertices. Assume e = au and
f = dv , u, v ∈ V (H), being two subdivision vertices. Up to symmetries we have four cases; see Figure 6:

(i) u, v ∈ bc.

(ii) u ∈ bd and v ∈ bc.

(iii) u ∈ bd and v ∈ ac.

(iv) u ∈ bd and v ∈ ab.

(i) a

d

u v
b c

(ii) a

d

v
b c

u

(iii) a

d

b c
u

v

(iv) a

d

b c
u

v

a a a a

d d d d

b c b c b c b c
u v v

u u u

v v

Figure 6: Cases (i), (ii), (iii), and (iv) of Claim 4.17.

In cases (i), (ii), (iii), just like in Figure 5 we can find a subdivision of K4 with strictly less vertices
than H. In case (iv) we can find a subdivision of K3,3, contradicting that it is planar by Lemma 4.1. Hence,
all mixed edges are incident to the same original vertex.
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We can assume all mixed edges are incident to d .

Claim 4.18. The main paths ad , bd , cd are indeed original edges, i.e., ad , bd , cd ∈ E (H).

Proof. Claim 4.16 says there is at least a mixed edge e ∈ E (G [H]). Assume e = du, u ∈ bc. There are three
K4-subdivisions H1, H2, H3 taking as original vertices {b, c , d , u}, {a, c , d , u}, {a, b, d , u}, respectively.
H having the minimum number of vertices implies ad , bd , cd ∈ E (H).

Now we know H contains three original edges and n − 3 mixed edges. Thus, degG (d) = n. We still
need to know about the outer cycle of H, Z := abca. From now on, we will not differentiate between the
original vertices a, b, c and the other vertices in Z adjacent to d through a mixed edge. We will denote
as v1, ... , vn ∈ Z the vertices adjacent to d in G , ordered consecutively, and E1, ... ,En the Θ-classes of
edges dv1, ... , dvn, respectively. Analogously, we will not differentiate H from any other subdivision of K4

taking d and any three vertices vi ∈ Z , since they all have the same number of vertices (minimal, by
hypothesis). ∀i , let Pi := vivi+1 ⊆ Z be the path not containing any other vj (Figure 7(i)).

(i)

d

vi

Pi

vi+1

(ii)

d d d

vj vj vj
vi vi vi

ui1 ui1 ui1

vk vk vkvi+1 vi+1 vi+1

(iii)

d d d

vi vi vi

ui1 ui1
ui

vi+1 vi+1 vi+1

uir

w

(iv)

vi vi

vj vj

ui

vi−1

ui−1
w

vi+1 vi+1

d d

Ei−1

(v)

vk
vi

ui

vi+2 = vj

d

vi+1

ui+1

Ei+1

(vi) x

wvi

ui−1

vj

ui

vi+1

d

(vii)

Gn

Figure 7: Summary of the different steps and cases in Claims 4.19 and 4.20.
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Claim 4.19. Long(Pi ) = 2 and Θ(Pi ) = (Ei+1,Ei ).

Proof. Assume Pi = (vi , ui1, ... , uir , vi+1). Keeping in mind that n ≥ 4 and H is minimal in vertices, we
can deduce that viu1 ∈ Ei+1 and urvi+1 ∈ Ei (Figure 7(ii)). Using partial cube properties, we deduce that
u1 = ur . Thus, ℓ(Pi ) = 2 and Θ(Pi ) = (Ei+1,Ei ) (Figure 7(iii)).

We deduce from Claim 4.19 that Z = (v1, u1, v2, u2, ... , vn, un, v1) and Gn ⊆ G . Moreover, we have
that Gn = G [H] = H ∪ {dvi , 1 ≤ i ≤ n}.

Claim 4.20. V (G ) = V (Gn).

Proof. Assume w ∈ V (G )\V (H) is adjacent to a vertex v ∈ V (H). v has to be in Z . We have two options:

(i) v = vi ∈ Z , 1 ≤ i ≤ n.

(ii) v = ui ∈ Z , 1 ≤ i ≤ n.

(i) Assume wvi ∈ E (G ) and wvi ∈ Ej . Note that j ̸= i − 1, i , i + 1, and can exist since n ≥ 4 (if n = 4,
then there is only one option for j). To complete a square, we must have wvj ∈ E (G ), wvj ∈ Ei . Then
there is a new K4-subdivision with original vertices d , vi , vi+1, vj , in which Ei−1 does not contain any
induced edge by H ′. But this cannot happen, as Lemma 4.4 affirms that Ei−1[H

′] ̸= ∅ (Figure 7(iv)).

(ii) Assume wui ∈ E (G ), wui ∈ Ej . Note that j ̸= i , i + 1. We split it in two new cases for j :

(a) j = i − 1 or j = i + 2, i.e., vj is consecutive to vi or vi+1 in Z .

(b) j ̸= i − 1, i + 2, i.e., vj is not consecutive to vi nor vi+1 in Z (cannot happen if n = 4).

(a) By symmetry, assume j = i + 2. The square {w , ui , vi+1, ui+1} is completed, so we have wui+1 ∈ Ei .
But note that now G contains a K4-subdivision H ′ with original vertices d , vi , vi+2, vk , where k can exist
since n ≥ 4 (Figure 7(v)). Note that |H ′| = |H| and Ei+1 does not contain any original or mixed edge
in H ′, which contradicts Claim 4.15.

(b) Assume j ̸= i − 1, i + 2. The path (w , ui , vi+1, d , vj) has length 4 and two edges in Ej . Then a short
path P = wvj has to have length 2, i.e., P = (w , x , vj), x /∈ Z , and Θ(P) = (Ei+1,Ei ). This forces the
edge xvi to exist and be contained in Ej . v1x satisfies case (i) conditions, which we have already seen that
it leads to a contradiction (see Figure 7(vi)).

Every case leads to absurdity. Then, there are no edges vw between v ∈ Z and w ∈ V (G )\V (Gn).
Since G is connected, we get V (G )\V (Gn) = ∅, i.e., V (G ) = V (Gn).

We have that G [Gn] = G and V (Gn) = V (G ). Finally we conclude that G = Gn (Figure 7(vii)), which
finishes the proof of Lemma 4.13.

4.3 Final results

Theorem 4.21. The excluded pc-minors for outerplanar partial cubes are L, Q3, and Gn for n ≥ 3.
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Proof. Let G be a non-outerplanar partial cube such that every pc-minor of G is outerplanar. Chartrand–
Harary [9] prove that non-outerplanar graphs contain K2,3 or K4 as a minor and it is easy to see that hence
they contain a subdivision of K2,3 or K4. In particular this holds for G . By Lemmas 4.5, 4.6, and 4.13 we
obtain that any pc-minor minimal non-outerplanar partial cubes must be a member of {L,Q3,Gn, n ≥ 3}.
The proof that all elements of {L,Q3,Gn, n ≥ 3} pc-minor minimal non-outerplanar partial cubes can be
found in [26].

Since Lemmas 4.5, 4.6, and 4.13 are very specific concerning the graph that is obtained as a subdivision
and series-parallel graphs are exactly those not containing a subdivision of K4, see e.g. [8], we get:

Theorem 4.22. The excluded pc-minors for series-parallel partial cubes are Q3 and Gn for n ≥ 3.

5. Conclusions

The next natural minor-closed class are planar partial cubes, which have been characterized in different
ways [1, 14]. Computer experiments show that in isometric dimensions 4, 5, 6 there are already 9 + 61 +
272 = 344 pc-minor-minimal non-planar partial cubes. Considering pc-minor-minimal non-planar partial
cubes such that all their isometric subgraphs are planar yields 2 + 10 + 34 = 46 graphs. Looking only
at pc-minor-minimal non-planar median graphs gives 1 + 4 + 8 = 13 obstructions. Another possible class
to attack are apex-outerplanar partial cubes, i.e., graphs that become outerplanar after removing some
vertex. This minor-closed class lies between outerplanar and planar graphs, its 57 excluded minors are
known; see [15]. For any excluded pc-minor G of outerplanar partial cubes, G□K2 is an excluded pc-minor
of apex-outerplanar partial cubes as well as for planar partial cubes, i.e., in both cases the list is infinite.
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