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Resum (CAT)
En aquest projecte estudiem el comportament dinàmic de la faḿılia de fun-

cions transcendents meromorfes fλ(z) = λ
(

ez

z+1 − 1
)
, la qual es pot veure

com l’anàleg meromorf de la ben coneguda faḿılia de polinomis cúbics de

Milnor Pa(z) = z2(z−a) [12] o la seva versió entera λz2ez [7, 8]. Contràriament a

aquests dos casos, les conques d’atracció de fλ no són simplement connexes. De fet,

en aquest document es demostra que sota certes condicions, la conca d’atracció

de z = 0 és infinitament connexa.

Abstract (ENG)
In this paper we analyze the dynamical behavior of the family of transcendental

meromorphic maps fλ(z) = λ
(

ez

z+1 − 1
)
. This family is the meromorphic analogue

of the well-known Milnor family of cubic polynomials Pa(z) = z2(z − a) [12] or its

entire version λz2ez [7, 8]. Opposed to these two cases, the basins of attraction

of fλ are not simply connected. In fact, we prove that under certain conditions, the

basin of attraction of z = 0 is infinitely connected.
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itude to Núria Fagella, my mentor and ad-

visor.

41http://reportsascm.iec.cat Reports@SCM 7 (2022), 41–49; DOI:10.2436/20.2002.02.31.

Dynamics of a family of
meromorphic functions

http://reportsascm.iec.cat


Dynamics of a family of meromorphic functions

1. Introduction

In this work we focus on some dynamical aspects of transcendental meromorphic functions, i.e., we study the
dynamical systems given by the iterates of meromorphic functions f : C→ C∞ with an essential singularity
at ∞, where C∞ denotes C ∪ {∞} or the Riemann sphere. Here the n-th iterate of a point z ∈ C is

denoted by f n(z) = (f ◦
(n)
· · · ◦ f )(z), and the sequence of iterates {f n(z)}n∈N is well-defined for all z ∈ C

except for the countable set of poles and prepols of f of any order.

The interest for these functions is twofold: The essential singularity, on the one hand, adds a lot of
chaos to the dynamical system, mainly because of Picard’s Theorem, which states that in each punctured
neighborhood of ∞, these functions assume each value of the Riemann sphere C∞, with at most two
exceptions (such exceptional values are known as omitted values), infinitely often. Hence, given a point z ∈
C, if its orbit O+

f (z) = {f n(z) : n ∈ N} is near ∞ at some moment, after one iteration it can land at
almost any place of the plane. On the other hand, the presence of poles allows for more generality, when
compared to entire functions, since ∞ is not required to be an omitted value.

The phase space (also called dynamical plane) of a meromorphic function f splits into two completely
invariant sets: The Fatou set F (f ), which is the set of points z ∈ C such that the sequence of iter-
ates {f n}n∈N is defined and normal in some neighborhood of z ; and its complement, the Julia set J(f ).

It follows trivially from the definition that the Fatou set is open and hence the Julia set is closed.
The first consists of components known as Fatou components, each of them might be either simply or
multiply connected (including the infinitely connected case as we will see here). Let U = U0 be a Fatou
component, then f n(U) is contained in another component of F (f ) that we denote by Un. We say that
U0 is preperiodic if Un = Um for some n > m ≥ 0 (if m = 0, we say that its periodic and if n = 1, we say
that it is fixed or forward invariant), otherwise we say that U is wandering. Periodic Fatou components are
classified according to the following celebrated result of Fatou [2], which for simplicity we state for fixed
components.

Theorem 1.1 (Classification Theorem for fixed Fatou components). Let U be a fixed Fatou component.
Then we have one of the following possibilities:

(i) U contains an attracting fixed point z0 and f n(z) −−−→
n→∞

z0 for all z ∈ U, which is called the

immediate attractive basin of z0.

(ii) ∂U contains a fixed point z0 and f n(z) −−−→
n→∞

z0 for all z ∈ U. Moreover, f ′(z0) = 1 if z0 ∈ C and

U is called a parabolic (or Leau) domain.

(iii) There exists φ : U → D conformal such that φ(f (φ−1(z))) = e2πiαz for some α ∈ R \Q. Moreover,
U is called a Siegel disk.

(iv) There exists φ : U → A conformal where A = {z : 1 < |z | < r}, r > 1, is an annulus such that
φ(f (φ−1(z))) = e2πiαz for some α ∈ R \Q. Moreover, U is called a Herman ring.

(v) There exists z0 ∈ ∂U such that f n(z) −−−→
n→∞

z0 for all z ∈ U but f (z0) is not defined. Moreover,

U is called a Baker domain.

In order to study the Fatou components we introduce the notion of the singularities of the inverse,
which are the points a ∈ C where some branch of f −1 is not well-defined (holomorphic and injective) in
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a neighborhood of a ∈ C. Two different cases can arise: either there exists z ∈ C such that f (z) = a
and f ′(z) = 0 (z ∈ C is then said to be a critical point and a ∈ C a critical value); or there exists a
curve γ : [0,∞)→ C such that γ(t) −−−→

t→∞
∞ and f (γ(t)) −−−→

t→∞
a (a ∈ C is then said to be an asymptotic

value and the curve γ an asymptotic path).

Singular values (critical or asymptotic) play a fundamental role in the dynamical behavior of holomorphic
(or meromorphic) functions. For example, any immediate attractive or parabolic basin of attraction needs
to contain a singular value. In the remaining cases they are also relevant (see [1, 2, 4, 5, 11]), but in this
paper we will focus in the study of an attractive basin of the family of maps

fλ(z) = λ

(
ez

z + 1
− 1

)
,

where λ ∈ C \ {0} is a complex parameter.

Figure 1: In green, F (f0.89). Range (−5, 7)× (−6, 6).

Maps in this family are the simplest meromorphic maps with two singular values: z = 0 which is a fixed
critical value (and fixed point), and z = −λ, which is an asymptotic value whose orbit depends on λ. It
has also one single pole z = −1, which is not omitted except for λ = 1. Since z = 0 is a superattracting
fixed point (i.e., a critical point which is a fixed point), its basin of attraction Aλ(0) is non-empty for all
values of λ.

This family can be viewed as the meromorphic analogue to the well-known Milnor family of cubic
polynomials Pa(z) = z2(z − a) [12] or its entire version λz2ez [7, 8], both having also a superattracting
fixed point and a free second singular value, which may or may not be captured by the attracting basin
of 0. In both cases all components of the Fatou set are simply connected. In contrast, in this paper we
prove that the basin of attraction of z = 0 for fλ is infinitely connected for some parameter values.

Additionally, it is well-known that functions with only finitely many singular values do not have Wan-
dering nor Baker domains [3, 4, 6, 10], hence F (fλ) does not have any of these components. Moreover,
since any attractive basin or rotation domain needs a singular value, we can have at most two periodic
cycles of Fatou components for every parameter value, one of which is always the basin of z = 0.

Hence it is to our interest to study the main capture component C0 = {λ ∈ C∗ : −λ ∈ A∗λ(0)}, where
A∗λ(0) denotes the immediate basin of attraction of z = 0. In this case there is only one Fatou component
and we can draw an accurate picture of F (f ) by considering the points whose orbit is attracted to z = 0.
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After addressing the study of the dynamical properties of fλ for λ ∈ C0, we prove:

Theorem A. If −λ ∈ A∗λ(0), then Aλ(0) is connected and infinitely connected. Moreover, the set C0 :=
{λ ∈ C∗ : −λ ∈ A∗λ(0)} contains a punctured disk of center 0 and radius 1/2 (see Figure 2).

The paper is structured as follows. In Section 2 we prove some estimates which are useful in Section 3,
where we prove Theorem A.

2. Preliminaries

Our goal in this section is to prove some estimates that will be useful in the later section. We start by
estimating the radius of the largest disk contained in Aλ(0), which we denote by

rλ = sup{r > 0 : D(0, r) ⊂ Aλ(0)} < 1,

where the last inequality follows from the fact that z = −1 is a pole and hence belongs to the Julia set.

Proposition 2.1 (Maximum inner disk). For every λ ∈ C∗,

rλ ≥ ε(λ) :=
1

2

(
2 + |λ| −

√
|λ|2 + 4|λ|

)
∈ (0, 1).

Consequently D(0, ε(λ)) ⊂ Aλ(0).

Proof. For 0 < ε < 1 and |z | < ε we have

|fλ(z)| = |fλ(z)− fλ(0)| ≤ |λ|
(

max
|z|=ε

∣∣∣∣ zez

(z + 1)2

∣∣∣∣) |z |,
where we have used the Maximum Modulus Principle for f ′λ. For z = εe iθ we have

gλ(ε, θ) := |λ|
∣∣∣∣ zez

(z + 1)2

∣∣∣∣ = |λ| εeε cos(θ)

1 + ε2 + 2ε cos(θ)
.

The goal is to obtain the maximum ε such that fλ is a strict contraction in D(0, ε), because then all points
in D(0, ε) converge to z = 0 under iteration, i.e., we want to obtain sup{ε ∈ (0, 1) : gλ(ε, θ) < 1, θ ∈
[0, 2π)} since then it follows that |fλ(z)| < |z |. We split it in two cases depending on θ.

• For θ ∈ [−π/2,π/2), we have gλ(ε, θ) ≤ |λ|εeε/(1 + ε2) =: gλ,1(ε).

• For θ ∈ [π/2, 3π/2), we have gλ(ε, θ) ≤ |λ|ε/(1− ε)2 =: gλ,2(ε).

Observe now that for 0 < ε < 1, we always have gλ,1(ε) ≤ gλ,2(ε). Moreover, for 0 < ε < 1,

|λ| ε

(1− ε)2
< 1 ⇐⇒ ε2 − (2 + |λ|)ε+ 1 > 0,

and this last polynomial has roots

ε(λ) =
1

2

(
2 + |λ| −

√
|λ|2 + 4|λ|

)
and

2 + |λ|+
√
|λ|(|λ|+ 4)

2
.

Then ε(λ) ∈ (0, 1) and the result follows.
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As a consequence of Proposition 2.1 we see now that for a disk of parameters of definite size, the
free asymptotic value z = −λ belongs to the immediate basin of z = 0. The set of parameters with this
property is called the main capture component C0, which was defined in the introduction.

Figure 2: In green, C0. In white, ∂D(0, 1/2). Range (−4, 4)× (−4, 4).

Corollary 2.2. D∗(0, 1/2) = D(0, 1/2) \ {0} ⊂ C0.

Proof. From the lower bound on rλ given by Proposition 2.1, we obtain that −λ ∈ D(0, ε(λ)) if ε(λ)−λ >
0, or equivalently if

2− |λ| >
√
|λ|2 + 4|λ|.

It is easy to verify that this inequality holds for |λ| < 1/2.

3. Connectivity of the basin of z = 0: Proof of
Theorem A

We prove Theorem A in two parts. Assume in what follows that the asymptotic value z = −λ belongs to the
immediate basin of attraction of z = 0, or equivalently the parameter λ ∈ C0. We first show that the basin
of attraction of z = 0 is connected, that is, Aλ(0) = A∗λ(0), and hence totally invariant (Theorem 3.2).
Then we prove that under the same hypothesis, A∗λ(0) is infinitely connected (Theorem 3.4).

Both results follow from two technical lemmas.

Lemma 3.1. Let λ ∈ C0. Then, all asymptotic paths of z = −λ intersect the same Fatou component
of F (fλ).
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Proof. Given an asymptotic path Γ of z = −λ, i.e.,

Γ(t) −−−→
t→∞

∞ and fλ(Γ(t)) −−−→
t→∞

−λ

then Re(Γ(t)) must be bounded from above, i.e., exists MΓ <∞ such that

sup
t≥0

Re(Γ(t)) ≤ MΓ.

Since −λ ∈ A∗λ(0), there exists ε > 0 such that D(−λ, ε) ⊂ A∗λ(0). Now, the preimages of D(−λ, ε) must
belong to Aλ(0). In particular, there exists ν < 0 and a half-plane, Πν = {z ∈ C : Re(z) < ν} such that
fλ(Πν) ⊂ D(−λ, ε), and hence Πν belongs to one component of Aλ(0). But now, all asymptotic paths
must have unbounded negative real part and hence they must all intersect Πν .

We now can prove that in this case the basin of z = 0 is connected.

Theorem 3.2. If λ ∈ C0, then Aλ(0) = A∗λ(0) is connected. In particular, Aλ(0) is totally invariant and
is the whole Fatou set.

Proof. Suppose that −λ ∈ A∗λ(0). From Proposition 2.1, we can consider the disk U0 = D(0, ε(λ)) ⊂
A∗λ(0).

Now we pull-back U0 in order to obtain the whole immediate basin A∗λ(0):

Consider, for N > 0, UN as the connected component of f −1
λ (UN−1) that contains UN−1. This recur-

rence defines a sequence of subsets {UN}N≥0 such that:

• UN ⊂ A∗λ(0) for all N ≥ 0.

• UN ⊂ UN+1 for all N ≥ 0.

• A∗λ(0) =
⋃

N≥0 UN .

Since −λ ∈ A∗λ(0), there exists N > 0 such that −λ ∈ UN (i.e., f N
λ (−λ) ∈ U0), and we can find a

path γ ⊂ UN that joins −λ and 0.

So UN+1 is unbounded, because z = −λ is an asymptotic value (a Picard Value), hence the preimage
of γ must contain a path that joins 0 and ∞ (which is contained in UN+1). Using Lemma 3.1 we obtain
that, in fact, when −λ ∈ A∗λ(0) all asymptotic tracts intersect A∗λ(0).

Now suppose thatAλ(0) is not connected, then we must have at least two connected components,A∗λ(0)
and U. Furthermore,

fλ(U) = A∗λ(0) \ {−λ}.

So U must contain a tail of an asymptotic path, but by Lemma 3.1 and the previous observation, this tail
must be contained in A∗λ(0) and the claim follows.

Our next goal is to prove that A∗λ(0) is infinitely connected (Theorem 3.4). To that end we first
construct a closed curve in A∗λ(0) which surrounds the pole z = −1. The Böttcher coordinates are the key
ingredient. Given a closed curve γ, we denote by ind(γ, p) the winding number of γ with respect to the
point p ∈ C.

Lemma 3.3. Let −λ ∈ A∗λ(0). Then there exists a closed, simple curve β, contained in Aλ(0), such that
0 6∈ β and ind(fλ(β), 0) = −1.
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Proof. Let U be a neighborhood of z = 0 and ϕ : U → D(0, r) be the Böttcher map which locally
conjugates fλ to Q0(w) = w 2.

Consider ε < r < 1 and define, D = ϕ−1(D(0, ε)) and D ′ = ϕ−1(D(0, ε2)). The curves, r̃1(t) = i
√

t,
r̃2(t) = −i

√
t, for t ∈ [0, ε), are mapped by Q0 to r̃0(t) = −t = Q0(r̃j(t)), j = 1, 2. Now set rj(t) =

ϕ−1(r̃j(t)), j = 1, 2.

Since −λ ∈ A∗λ(0), there exists a disk V centered at z = −λ such that V̄ ⊂ A∗λ(0) and, by Lemma 3.1,
f −1
λ (V̄ ) contains a half-plane {z ∈ C : Re(z) < ν}.

Furthermore, since by Theorem 3.2, A∗λ(0) = Aλ(0) is connected, we can find a simple curve α0 ⊂
A∗λ(0) such that α0(0) = 0, α0(1) = −λ and (r0)|[0,ε] = (α0)|[0,ε].

Define s ∈ (ε, 1) such that α0(s) ∈ ∂V . Observe that the preimage of α0 by fλ are two simple
curves, α1, α2 (because the preimage of r̃0 by Q0 consists of two disjoint curves), which are asymptotic
paths, such that:

• (rj)|[0,ε] = (αj)|[0,ε] for j = 1, 2.

• (α1)|[ε,s) ∩ (α2)|[ε,s) = ∅, that is, because 0 6∈ fλ((α1)|[ε,s)) = fλ((α2)|[ε,s)) = (α0)|[ε,s) and hence,
fλ is conformal for every z ∈ (α1)|[ε,s) ∪ (α2)|[ε,s).

Now define.

• γj = (αj)|[ε,s] for j = 0, 1, 2.

• γ3 ⊂ f −1
λ (∂V ) the simple curve that joins γ1(s) and γ2(s).

• γ̃4(t) = εe−2πit and γ4,1 = ϕ−1((γ̃4)|[1/4,3/4]), γ4,2 = ϕ−1((γ̃4)|[−1/4,1/4]).

γ0

γ1

γ2

r0

r1

r2

γ3

V

−λ

f −1
λ (V )

D ′

D

Figure 3: Representation of the curves and domains in the proof of Lemma 3.3.
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Then we can define the curves,

β1 = γ1 ∪ γ2 ∪ γ3 ∪ γ4,1 and β2 = γ1 ∪ γ2 ∪ γ3 ∪ γ4,2,

which by construction are closed, simple curves contained in Aλ(0) that omit z = 0. Observe that β1

(resp. β2) can be parametrized as a simple closed curve preserving the orientation that γ4,1 (resp. γ4,2)
inherits from γ̃4.

Finally,
fλ(βj) = ∂V ∪ γ0 ∪ ∂D ′, j = 1, 2.

Hence, since ∂V ∪ γ0 does not contribute to ind(fλ(βj), 0), we have ind(fλ(βj), 0) = ind(∂D ′, 0), thus

ind(fλ(β1), 0) = ind(∂D ′, 0) = −1 or ind(fλ(β2), 0) = ind(∂D ′, 0) = −1

(we want the curve β1 or β2 to be oriented counterclockwise), so we can take β = β1 or β = β2 so that
ind(fλ(β), 0) = −1.

Finally, we prove the remaining part of the theorem.

Theorem 3.4. If λ ∈ C0 = {λ ∈ C∗ : −λ ∈ A∗λ(0)}, then Aλ(0) = F (fλ) is infinitely connected.

Proof. By Theorem 3.2 we know that Aλ(0) = A∗λ(0) = F (fλ) is connected. Let Z (fλ) denote the discrete
set of zeros of fλ and P(fλ) the set of poles of fλ.

Consider the simple closed curve provided by Lemma 3.3. By the Argument Principle (see [9]),

ind(fλ(β), 0) = −1 =
∑

a∈Z(fλ)

m(a) ind(β, a)−
∑

a∈P(fλ)

m(a) ind(β, a),

where m(a) denotes the order of the zero or the pole.

Since β is a simple closed curve oriented counterclockwise, the equation reads

−1 =
∑

a∈Z(fλ)

m(a) ind(β, a)− ind(β,−1),

which can only be satisfied if β surrounds no zeros of fλ and the unique pole z = −1 is surrounded by β.

So, β ⊂ Aλ(0) = A∗λ(0) and −1 ∈ int(β). Then, the successive preimages of int(β) contain points w ∈
O−fλ(∞) ⊂ J(fλ) which lie in the interior of a closed curve contained in Aλ(0). Hence, since the backward
orbit of ∞ is an infinite set (the points that are eventually mapped to ∞ under iteration by fλ), Aλ(0) is
infinitely connected.
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