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Resum (CAT)
En les seves cèlebres Disquisitiones Arithmeticae, Gauss va descobrir una llei de

composició que confereix una estructura de grup al conjunt de classes de formes

quadràtiques binàries amb discriminant fixat. Dos segles més tard, Bhargava va

donar una reinterpretació d’aquesta llei a través de cubs 2 × 2 × 2 d’enters, ara

coneguts com a cubs de Bhargava. El plantejament d’aquest article rau en utilitzar

la mateixa idea dels cubs de Bhargava però en cubs 3×3×3, que donen lloc a corbes

planes projectives de grau 3. L’objectiu és determinar lleis de composició anàlogues

que involucrin aquestes corbes. A tal fi, es desenvoluparan els coneixements

matemàtics pertinents, incloent cohomologia de Galois i geometria algebraica, fent

èmfasi en corbes ellptiques i, més en general, en les propietats de corbes de gènere 1.

Abstract (ENG)
In his celebrated Disquisitiones Arithmeticae, Gauss discovered a composition law

that gives a group structure to the set of classes of binary quadratic forms of a

given discriminant. Two centuries later, Bhargava gave a reinterpretation of this law

through 2× 2× 2 cubes of integers, now known as Bhargava cubes. In this article,

we aim to use the same idea of Bhargava cubes but in 3× 3× 3 cubes, that yield

projective plane curves of degree 3. Our aim is to determine analogous composition

laws involving these curves. To this end, we will review the needed mathematical

knowledge, including Galois cohomology and algebraic geometry, with an emphasis

on elliptic curves and, more generally, in the properties of genus one curves.
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and Santi Molina for their guidance during

the development of this project, and the

anonymous referee for their helpful com-

ments.

27http://reportsascm.iec.cat Reports@SCM 7 (2022), 27–39; DOI:10.2436/20.2002.02.30.

Bhargava cubes and elliptic curves

http://reportsascm.iec.cat


Bhargava cubes and elliptic curves

1. Introduction

In 1801, Gauss published his Disquisitiones Arithmeticae [10], which among many other topics study the
composition of binary quadratic forms. More specifically, he found a group law between the classes of binary
quadratic forms of a given discriminant. 200 years later, in his PhD thesis, Bhargava studied whether there
were higher analogues of this law that could help interpret other number rings and their class groups. He
did that by considering different-sized cubes of integers and the forms arising from them. Most notable
is his approach in [2] using 2 × 2 × 2 cubes of integers, which yield an elegant reinterpretation of Gauss
composition and allows to obtain higher composition laws. His work led to a bigger understanding of
parametrizations of quartic and quintic rings and the density of their discriminants.

The next obvious step would be to consider 3× 3× 3 cubes. In [3], it is explained that 3× 3× 3 cubes
give rise to a composition law on general ternary cubic forms, but this composition doesn’t directly give
information on the corresponding cubic rings. In fact, cubic rings are most naturally related to binary cubic
forms, obtained by 2× 3× 3 cubes. This is the explanation given by Bhargava to focus on 2× 3× 3 cubes
rather than on the 3× 3× 3 case.

The aim of this article is to explore the behaviour of 3× 3× 3 cubes in a more geometrical setting. We
will consider cubes with entries in some field K , which will give rise to genus one curves in the projective
plane, and we will see how there is an analogous group law satisfied by these curves.

This article will begin with a brief exposition Gauss’ composition and Bhargava’s work in 2×2×2 cubes.
We will later introduce concepts in arithmetic geometry that will be necessary for us later. This includes a
brief introduction to elliptic curves and more generally to genus one curves, and also Galois cohomology and
its relation to elliptic curves. We will conclude by explaining results in the aforementioned 3× 3× 3 cubes,
in parallel with the results in [4].

2. Gauss’ composition law and Bhargava cubes

Definition 2.1. A binary quadratic form is a polynomial of the form f (x , y) = ax2 + bxy + cy2, with
a, b, c ∈ Z. We say that f is primitive if gcd(a, b, c) = 1. The discriminant of a binary quadratic form is
defined to be D := b2 − 4ac.

Definition 2.2. We say that two binary quadratic forms f , g are equivalent if there exists a matrix
S = ( r s

t u ) ∈ SL2(Z) such that g(x , y) = f (rx + sy , tx + uy). We will denote this as f ∼ g .

It is not difficult to see that equivalence of binary quadratic forms is an equivalence relation, and that
any two equivalent binary quadratic forms have the same discriminant.

Definition 2.3. Let f , g be two primitive binary quadratic forms with the same discriminant. A binary
quadratic form h is a composition of f and g if the following conditions hold:

f (x , y) · g(z , w) = h(B1(x , y , z , w), B2(x , y , z , w));

p1q2 − p2q1 = f (1, 0);

p1r2 − p2r1 = g(1, 0);

where Bi (x , y , z , w) = pi xz + qi xw + ri yz + si yw (i = 1, 2) are two bilinear forms with integer coefficients.

Gauss famously proved that, in fact, composition gives a group law to the set of equivalence classes
primitive binary quadratic forms of fixed discriminant D. More precisely:
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Theorem 2.4 (Gauss). (i) Given two primitive binary quadratic forms f , g of given discriminant D,
there always exists a composition h of f and g. Moreover, this composition is unique and well-
defined up to equivalence, meaning:

(1) If h1, h2 are two compositions of f and g, then h1 ∼ h2.

(2) If hi is the composition of fi and gi for i = 1, 2, satisfying f1 ∼ f2 and g1 ∼ g2, then h1 ∼ h2.

(ii) The equivalence classes of primitive binary quadratic forms of fixed discriminant D constitute an
abelian group under composition.

(iii) The identity is given by

Qid,D(x , y) =


[

x2 − D

4

]
, if D ≡ 0 (mod 4),[

x2 + xy − D − 1

4

]
, if D ≡ 1 (mod 4),

where [f ] denotes the equivalence class of f .

There is a reinterpretation of Gauss composition due to Dirichlet, which relates the composition of
binary quadratic forms with the multiplication of fractional ideals in orders of number fields; see [6] for
more details.

We now present Bhargava’s reinterpretation of the Gauss composition law through 2× 2× 2 cubes.

Definition 2.5. A Bhargava cube is an element A ∈ Z2⊗Z2⊗Z2. If A is represented by (a, b, c , d , e, f , g , h)
under a basis of Z2 ⊗ Z2 ⊗ Z2, then it can visualized as:

e f

a b

g h

c d

This cube can be partitioned into two 2 × 2 matrices in three different ways, according to the three
orientations of the cube. Namely, the corresponding matrices are:

M1 =

[
a b
c d

]
, N1 =

[
e f
g h

]
;

M2 =

[
a c
e g

]
, N2 =

[
b d
f h

]
;

M3 =

[
a e
b f

]
, N3 =

[
c g
d h

]
.

Given any such partition, we may obtain a binary quadratic form through:

QA
i (x , y) = − det(Mi x − Ni y).

Under this setting, a natural question to ask is: how are these three binary quadratic forms related?
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Theorem 2.6 (Bhargava). Let A be a Bhargava cube giving rise to three primitive binary quadratic
forms Q1, Q2, Q3. Then,

(i) The forms Q1, Q2, Q3 have the same discriminant D.

(ii) The three forms satisfy
[Q1] + [Q2] + [Q3] = [Qid,D ],

where + corresponds to Gauss composition and Qid,D is the identity form defined in Theorem 2.4.

(iii) Conversely, given any three forms satisfying [Q1] + [Q2] + [Q3] = [Qid,D ], there exists a cube A giving
rise to [Q1], [Q2], [Q3] (which is unique modulo a suitable action of SL2(Z)).

Here, there is an action of Γ = (SL2(Z))3 on a cube A ∈ Z2 ⊗ Z2 ⊗ Z2. In terms of the partition, the
action of the i-th matrix ( r s

t u ) replaces (Mi , Ni ) for (rMi + sNi , tMi + uNi ).

3. Genus one curves

The main goal of this article will be to find an analogue to Theorem 2.6 but for 3 × 3 × 3 cubes. To do
that, we first need to introduce some concepts related to genus one curves.

3.1 Preliminaries in algebraic geometry

We will assume some familiarity with the basics of algebraic geometry. For further context, the reader may
wish to consult [9] or the first two chapters of [12].

Fix throughout a perfect field K with algebraic closure K . Let C ⊆ P2 be a curve, that is, the vanishing
locus of an irreducible homogeneous polynomial f (x , y , z) of degree d . We will denote by C (K ) the set of
K -points of C , and we will typically denote the K -points just by C .

Definition 3.1. The divisor group of C is the free abelian group generated by the K -points of C . In other
words, a divisor D of C is a formal sum

D =
∑

P∈C(K)

nPP,

where nP ∈ Z and nP = 0 for all but finitely many P. The degree of a divisor is defined by

deg D =
∑

P∈C(K)

nP .

Finally, a principal divisor is of the form

div f =
∑

P∈C(K)

ordP(f )P,

for some f ∈ K (C ).

The principal divisors of C form a subgroup of the divisor class group, since for any f , g ∈ K (C ):

div(fg) = div(f ) + div(g), div(1/f ) = − div(f ).
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Definition 3.2. The Picard group of C is the quotient of its divisor group by the subgroup of principal
divisors.

Another fundamental concept in our study is the genus g(C ) of the curve C . In our particular case
where C ⊆ P2 is given by the vanishing locus of a homogeneous polynomial of degree d , the genus of C
can be computed to be

g(C ) =
(d − 1)(d − 2)

2
,

if the curve C is non-singular (see e.g. [9, Chap. 8, Prop. 5]). Note in particular that if d = 3, then
g(C ) = 1.

3.2 Elliptic curves

Definition 3.3. An elliptic curve is a genus one curve E/K with a distinguished K -rational point OE ∈
E (K ).

Proposition 3.4. Let char K 6= 2, 3. Then, E/K is isomorphic to a projective plane curve of the form

y2z = x3 + axz2 + bz3,

where the point OE corresponds to the point at infinity (0 : 1 : 0). The coefficients satisfy 4a3 + 27b2 6= 0.

The points of an elliptic curve are known to have a natural group structure. Given two points P, Q ∈
E (K ), we define P + Q with the following procedure, which is represented in Figure 1:

• If P 6= Q, the line passing through P and Q intersects E in another point R. Then, the line passing
through OE and R intersects E at a third point, which we define to be P + Q.

• If P = Q, we choose the first line to be the tangent line of E at P.

• If R = OE , set P + Q := OE .

P
Q

R

P + Q

P

R

[2]P

Figure 1: The group law of an elliptic curve. Figure obtained from [8].

Theorem 3.5. The operation + defines an abelian group structure on E.

We denote by E [n] the group of n-torsion points, that is, the group of points P ∈ E such that nP = 0E .
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3.3 The Jacobian of a genus one curve

Given any genus one curve, there is a natural way to associate to it an elliptic curve, called the Jacobian.
This can be made more precise (see [5, Chap. 20, Theor. 1]):

Proposition 3.6. Let C/K be a genus one curve. Then, there exists an elliptic curve E/K together with
an isomorphism φ : C → E with the property that for every σ ∈ Gal(K/K ) the isomorphism ϕσ : E → E
defined by ϕσ = (σφ) ◦φ−1 is a translation by a point Pσ, for some Pσ ∈ E (K ). Moreover, E is unique up
to K -isomorphism.

We define the Jacobian of the curve C/K to be the elliptic curve E/K appearing in Proposition 3.6.

Proposition 3.7. The group structure of the points of the Jacobian E is isomorphic to the degree-0 Picard
group of C (which is the group defined in Definition 3.2 restricted to the divisors of degree 0).

3.4 Models of genus one curves

If a genus one curve has a rational point, then it can be brought to a Weierstrass form, which is the form
given by Proposition 3.4. However, if the curve does not have a rational point, we have to seek other
models for the curve. We will follow the exposition in [1].

Assume that a genus one curve C/K has a K -rational divisor D, meaning that σD = D for all σ ∈
Gal(K/K ). Assume deg D = n > 0, and define

L(D) := {f ∈ K (C ) | div(f ) + D ≥ 0} ∪ {0}.

It is a K -vector space, and the Riemann–Roch theorem in this case tells us that dimK L(D) = n (see [9]).

Let us focus on the case n = 3 (the cases n = 2, 4 are covered in [1]). Since dimK L(D) = 3, we choose
a K -basis of L(D), say {x , y , z}. Then, the ten elements x3, x2y , x2z , xy2, xyz , xz2, y3, y2z , yz2, z3

all belong to the 9-dimensional space L(3D), so there exists a linear relation between these elements. In
other words, there exists a ternary cubic form U such that

U(x , y , z) = 0.

In [1], there is an expression for two invariants of U, which we will call c4 and c6. We can further define

∆ =
c3
4−c2

6
1728 .

Theorem 3.8. The equation U(x , y , z) = 0 defines a genus one curve if and only if ∆ 6= 0. In that case,
and if char K 6= 2, 3, the Jacobian of the curve is

y2 = x3 − 27c4x − 57c6.

3.5 Galois cohomology and elliptic curves

Let G be a topological group (i.e. G has a topology where the group operation and the inverse are
continuous).
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Definition 3.9. An abelian group M is a G -module if there is an action G ×M → M satisfying, for all
g , g ′ ∈ G , m, m′ ∈ M:

(i) g(m + m′) = gm + gm′.

(ii) (gg ′)m = g(g ′m).

(iii) 1m = m.

(iv) The G -action is continuous with respect to the topology on G and the discrete topology on M.

Definition 3.10. A morphism of G modules is a group morphism α : M → N respecting the G -action
on M and N.

Now, let K be a perfect field and set GK = Gal(K/K ). We note that GK is naturally a topological
group under the Krull topology.

Definition 3.11. Let M be a GK -module. Then, its 0-th cohomology group is

H0(K , M) := MGK = {m ∈ M | gm = m for all g ∈ GK}.

Definition 3.12. Let M be a GK -module. The group of 1-cocycles is given by

Z 1(K , M) = {ξ : GK → M | ξ(gh) = g(ξ(h)) + ξ(g), ξ continuous},

Its subgroup of 1-coboundaries B1(K , M) consists of the cocycles ξ ∈ Z 1(K , M) such that ξ is of the
form ξ(g) = gm −m for some m ∈ M. Then, the 1st cohomology group is

H1(K , M) =
Z 1(K , M)

B1(K , M)
.

Proposition 3.13. Consider the exact sequence of GK -modules given by

0 P M N 0.

Then, there is a long exact sequence

0 H0(K , P) H0(K , M) H0(K , N)

H1(K , P) H1(K , M) H1(K , N).

δ

Remark 3.14. We could define higher cohomology groups (H2, H3 ... ) that would continue the long exact
sequence in an analogous manner.

Let us return to the setting of elliptic curves. For an elliptic curve E/K , there is a natural Galois action
defined component-wise. Let us consider the exact sequence

0 E [n] E E 0.
×n
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Then, Proposition 3.13 gives us a long exact sequence:

0 E (K )[n] E (K ) E (K )

H1(K , E [n]) H1(K , E ) H1(K , E ).

×n

δ

×n

From this long exact sequence we can extract a short exact sequence:

0 E(K)
nE(K) H1(K , E [n]) H1(K , E )[n] 0.δ ı (1)

This sequence is known as the Kummer exact sequence for E/K .

3.6 The twisting principle

We will conclude this section by interpreting what H1(K , E [n]) and H1(K , E ) are. We will assume that
char K - n, a harmless assumption given that later we will deal with n = 3 and char(K ) 6= 2, 3. We will
follow the exposition in [7].

We will make use of the twisting principle, which says that if X/K is an object defined over K , then
K -isomorphism classes of twists of X (other objects Y /K isomorphic to X over K ) are parametrized
by H1(K , Aut(X )), where Aut(X ) is the automorphism group of X .

Here, the twisting principle is stated rather loosely, but it will be true for all our applications. See [11]
and [7] for further details.

In view of the principle, if we are able to find a suitable object such that Aut(X ) is E or E [n], then we
will be able to interpret the objects arising in the Kummer sequence.

Definition 3.15. A torsor under E is a pair (C ,µ), where C is a smooth projective curve of genus one
defined over K , and µ : E × C → C is a morphism defined over K that induces a simple transitive action
on K -points.

An isomorphism of torsors (C1,µ1) ∼= (C2,µ2) is an isomorphism of the underlying curves that respects
the E -action.

Lemma 3.16. Every torsor under E is a twist of (E , +), where (E , +) is the trivial torsor given by the
group law. Moreover, Aut(E , +) = E .

Hence, by the twisting principle:

Theorem 3.17. The group H1(K , E ) parametrizes the torsors of E .

Definition 3.18. A torsor divisor class pair (C , [D]) is a pair consisting of a torsor C of E and a K -rational
divisor class [D] of degree n. Here, rationality means that σ(D) ∼ D for all σ ∈ Gal(K/K ).

Two such pairs (C1, [D1]) and (C2, [D2]) are isomorphic if there is an isomorphism of torsors φ : C1 → C2

such that φ∗D2 ∼ D1.

Lemma 3.19. Every torsor divisor class pair is a twist of (E , [nOE ]), OE is the point at infinity of E .
Moreover, Aut(E , [nOE ]) = E [n].
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The twisting principle in this case gives

Theorem 3.20. The group H1(K , E [n]) parametrizes the K -isomorphism classes of torsor divisor class
pairs.

In particular, it can be shown that in the Kummer sequence

0 E(K)
nE(K) H1(K , E [n]) H1(K , E )[n] 0,δ ı

the maps are defined as

δ(P) = (E , [(n − 1)OE + P]) and ı(C , [D]) = C .

4. 3 × 3 × 3 Bhargava cubes

Most of the results that we present here appear in [4]. However, this article takes a slightly different point
of view more focused in the group law of Theorem 4.4.

Assume that K is a perfect field and char(K ) 6= 2, 3. Let us consider a 3×3×3 cube (aijk ) with entries
in K . It can be drawn as follows:

a311 a312 a313

a321 a322 a323

a331 a332 a333
a211 a212 a213

a221 a222 a223

a231 a232 a233
a111 a112 a113

a121 a122 a123

a131 a132 a133

Analogously to the 2× 2× 2 case, we can partition this cube in three different ways to obtain the “front”
section, the “top” section and the “side” section:

Af ,i =

ai11 ai12 ai13

ai21 ai22 ai23

ai31 ai32 ai33

 , At,i =

a1i1 a1i2 a1i3

a2i1 a2i2 a2i3

a3i1 a3i2 a3i3

 , As,i =

a11i a21i a31i

a12i a22i a32i

a13i a23i a33i

 ,

for i = 1, 2, 3. These three partitions yield three polynomials using:

P•(X , Y , Z ) = det(A•,1X + A•,2Y + A•,3Z ),

with • = f , s, t.
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We note that Pf , Pt , Ps are homogeneous polynomials in X1, X2, X3 of degree 3, and hence define
algebraic sets in P2:

C• = {(X1, X2, X3) ∈ P2 | P•(X1, X2, X3) = 0}.

By the discussion in Theorem 3.8, any of these algebraic sets define a smooth genus one curve if and only
if their discriminant ∆ defined in Subsection 3.4 is different from 0.

Lemma 4.1. All curves Cf , Cs , Ct share the same invariants c4, c6, and hence the same discriminant ∆.
In particular, if one of the curves is smooth, then they all are smooth.

The proof can be done with an explicit computation, which we omit. Assume from now on that all
three curves are smooth.

Theorem 4.2. Let Cf , Cs , Ct be the curves arising from a 3×3×3 cube, and assume they are all smooth.
Then, all three curves are isomorphic over K .

Sketch of proof. Let (x1, x2, x3)∈Cf , and consider the matrix Mf (x1, x2, x3)=Af ,1x1+Af ,2x2+Af ,3x3. Then,
the columns cf ,i (x1, x2, x3) of this matrix are linearly dependent, say by some coefficients (X1, X2, X3) ∈ P2.
Then, a quick computation shows that

0 = X1cf ,1(x1, x2, x3) + X2cf ,2(x1, x2, x3) + X3cf ,3(x1, x2, x3)

= x1cs,1(X1, X2, X3) + x2cs,2(X1, X2, X3) + x3cs,3(X1, X2, X3).
(2)

The assignment ϕfs : Cf → Cs given by sending (x1, x2, x3) 7→ (X1, X2, X3) can be seen to be an isomor-
phism of algebraic curves.

We can analogously choose ϕft , ϕsf , ϕst , ϕtf and ϕts . It holds that ϕij = ϕ−1ji for any choice of i , j ;
but in general it is not true that ϕki ◦ ϕjk ◦ ϕij is the identity.

We can interpret Theorem 4.2 as the analogue of Theorem 2.6, item (i). Both results restrict how
“different” the arising objects can be: the binary quadratic forms have the same discriminant and the
genus one curves are isomorphic.

In particular, given that the three curves are isomorphic, they have the same Jacobian curve, which we
will call E .

We still need to find out whether these three curves obey some suitable group law. To this end,
consider the divisor at infinity Df of Cf , given by the intersection of Cf with any hyperplane (if we change
the hyperplane, we get a linearly equivalent divisor). Similarly, consider the divisors at infinity Ds and Dt

of Cs and Ct , let ∆f = Df , and let ∆s and ∆t be the pullbacks of Ds , Dt with respect to ϕfs and ϕft ,
respectively. Then, define

αf = (Cf , [∆f ]), αs = (Cs , [∆s ]), αt = (Ct , [∆t ]).

By Theorem 3.20, the elements αf , αs , αt can be interpreted in H1(K , E [3]). Additionally, it can be shown
that there exist points Pf , Ps , Pt in Cf such that 3P• ∼ ∆• for • = f , s, t.

Lemma 4.3. Assume ∆f , ∆s , ∆t arise from a cube. Then,

2∆f ∼ ∆s + ∆t ,

and ∆f is not linearly equivalent to either of ∆s or ∆t .
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Theorem 4.4. The three cocycles αf ,αs ,αt ∈ H1(K , E [3]) satisfy

αf + αs + αt = 0.

Proof. Recall that a degree 0 divisor can be identified as a point in the Jacobian (see Subsection 3.3). We
claim that:

Q = Pt + Ps − 2Pf ∈ E [3].

Indeed, remembering that 3P• ∼ ∆•, for • = f , s, t, and using the previous lemma:

3Q = 3Pt + 3Ps − 6Pf ∼ ∆t + ∆s − 2∆f ∼ 0.

We conclude that the cocycle αf + αs + αt is given by

αf (σ) + αs(σ) + αt(σ) = σ(Pf + Ps + Pt)− (Pf + Ps + Pt)

= (σQ − Q) + σ(3Pf )− 3Pf

∼ (σQ − Q) + σ∆f −∆f = σQ − Q,

since ∆f is a K -rational divisor. Thus, αf + αs + αt is a coboundary and the result follows.

4.1 Converse results

Now, we are interested in the converse to Theorem 4.4, namely: given any three cocycles α1,α2,α3 ∈
H1(K , E [3]), does there exist a cube giving rise to them? To start answering the question, we first state
the converse result for divisors.

Theorem 4.5. There is a bijection between:

(i) 3× 3× 3 cubes (modulo a suitable action of GL3(K )).

(ii) Isomorphism classes of (C , ∆f , ∆s , ∆t), where C is a genus one curve and ∆f , ∆s , ∆t are K -rational
divisors of degree 3 satsifying 2∆f ∼ ∆s + ∆t and ∆f � ∆s , ∆t .

See [4] for the proof.

Now, we recall again the Kummer exact sequence

0 E(K)
nE(K) H1(K , E [n]) H1(K , E )[n] 0.δ ı

By the definition of the map ı, if we have any three cocycles α1,α2,α3 ∈ H1(K , E [n]) we need to have
ı(α1) = ı(α2) = ı(α3).

However, there is still one more consideration to make, which is that an element of H1(K , E [3]) is
not necessarily represented by a projective cubic plane curve. Given a torsor divisor class pair (C , [D]), the
divisor D does not necessarily satisfy σD = D for every σ ∈ Gal(K/K ), but rather that σD ∼ D. By the
discussion in Subsection 3.4, the curve C needs to have a K -rational divisor D in order to be represented
by a projective plane cubic curve.

In [7], an obstruction map Ob is defined, so that Ob(α) = 0 for α ∈ H1(K , E [n]) if and only if the
cocycle α can be represented by (C , [D]), with σD = D for all σ in the Galois group.
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Finally, observe that the action of a translation by a point P ∈ E (K ) does not change the cocycle. In
other words, (C , [D]) = (C , [D ′]), where D ′ is obtained by the action of 3P on D. If 3E (K ) = {OE}, then
in the case where α1 = α2 = α3 we would not be able to change the divisor corresponding to the cocycles
and hence we would not be able to guarantee the conditions in Lemma 4.3.

Theorem 4.6. Assume that α1,α2,α3 ∈ H1(K , E [3]) satisfy

(i) α1 + α2 + α3 = 0.

(ii) ı(α1) = ı(α2) = ı(α3).

(iii) Ob(α1) = Ob(α2) = Ob(α3) = 0.

(iv) 3E (K ) 6= {OE} if α1 = α2 = α3.

Then, there exists a cube giving rise to α1, α2, α3.

As a final remark, observe that we are dealing with elements α1,α2,α3 ∈ H1(K , E [3]) with ı(α1) =
ı(α2) = ı(α3). By looking at the Kummer sequence, we see that the group law is actually taking place
more naturally in E (K )/3E (K ). Therefore, Theorem 4.6 can be restated more naturally:

Corollary 4.7. Assume we have a genus one curve C/K with Jacobian E/K , and suppose given three
points P1, P2, P3 ∈ E (K )/3E (K ) such that P1 + P2 + P3 = 0 in E (K )/3E (K ). Then, there exists a cube
giving rise to this information as long as we avoid the case where P1 = P2 = P3 and 3E (K ) = {OE}.
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