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Bousquet-Mélou i Schaeffer donaren el 2000 una enumeració bijectiva de certs
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generadora de certs arbres.

Abstract (ENG)
Bousquet-Mélou and Schaeffer gave in 2000 a bijective enumeration of some pla-
nar maps called constellations. In 2019, Lepoutre described a bijection between
bicolorable maps of arbitrary genus and some unicellular maps of the same genus.
We present a bijection between constellations of higher genus and some unicellular
maps that generalizes both existing bijections at the same time.

Using this bijection, we manage to enumerate a subclass of constellations on the

torus, proving that its generating function is a rational function of the generating

function of some trees.
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Bijective enumeration of constellations in higher genus

1. Introduction

A map M of genus g is a proper embedding of a graph in Sg , the torus with g holes, such that the maximal
connected components of Sg \M are contractible. These components are called faces. Multiple edges and
loops are allowed. Maps are considered up to orientation preserving homeomorphisms. A unicellular map
is a map with a single face.

Maps of genus 0 are called planar maps. They receive this name because embedding graphs in the
sphere or in the plane is essentially the same. The stereographical projection, for instance, can produce
a plane embedding from a sphere embedding. All the faces of a planar map embedded in the plane are
contractible except for one, the exterior face, which is homeomorphic to the complement of a disk.

A corner of a map is a couple of consecutive edges around a vertex. Equivalently, a corner can be seen
as an incidence between a face and a vertex. The degree of a vertex or face is its number of corners.

A rooted map is a map with a marked corner, which is called the root corner (or, simply, root). This
root corner naturally defines a root vertex and a root face. The maps we consider here will always be rooted.

If a map is rooted, we have a notion of clockwise and counterclockwise when following contractible
cycles. Precisely, we say that a tour around a contractible cycle is clockwise (resp. counterclockwise) if the
root face lies on the left (resp. right) side of it.

In maps, edges join two (possibly equal) vertices and separate two (possibly equal) faces. Thus, given
a map M, we can define its dual map M∗ in the following way. The faces (resp. vertices) of M become the
vertices (resp. faces) of M∗ and the dual of an edge e joining vertices v1 and v2 and separating faces f1
and f2 is an edge e∗ joining vertices f ∗1 and f ∗2 and separating faces v∗1 and v∗2 . Note that the dual of a
corner is “itself” (i.e., the same vertex-face incidence) and that dualization is involutive: (M∗)∗ = M.

Figure 1 contains an example of a planar map and its dual. Figure 2 contains an example of a map on
the torus with some additional structure that is presented later. Maps on the torus are drawn on a square
the parallel sides of which have to be identified.

Figure 1: A planar map and its dual.
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Maps are fundamental combinatorial objects that appear in many other fields of mathematics such
as algebra and mathematical physics. The enumeration of planar maps began with the work of Tutte in
the sixties [10]. In his work, Tutte enumerated a variety of families of maps, obtaining remarkably simple
formulas. For example, he showed that the number of rooted planar maps with n edges is

2(2n)!3n

n!(n + 2)!
.

His methods are based on the recursive combinatorial decomposition of maps and the equations obtained
usually require the introduction of additional parameters called catalytic variables. In the late eighties, these
techniques were extended to maps on surfaces of higher genus by Bender and Canfield [1, 2].

The simplicity of the formulas obtained by Tutte called for bijective demonstrations. Cori and Vauquelin
gave the first bijective proof of the enumeration of planar maps in 1981 [7]. After them, many others
continued this work, starting with Schaeffer, who gave numerous bijective constructions in the late nineties.
In 1997, he introduced blossoming trees to formulate a new bijection for planar maps [9]. In 2000, Bousquet-
Mélou and Schaeffer gave a bijection between planar constellations and some blossoming trees, which
allowed them to prove enumerative formulas for constellations [3]. It should be mentioned that there
is a second trend of bijections of maps based on trees decorated with some integers that encode metric
properties of the maps. These bijections were applied to planar constellations in [4] and were later extended
to higher genus in [5].

In positive genus, the natural equivalent of trees are unicellular maps. Chapuy, Marcus and Schaeffer
introduced in [6] some techniques to analyse these unicellular maps by decomposing them into schemes
with branches. In 2019, Lepoutre gave a blossoming bijection for bicolorable maps of any genus, which are
a particular case of constellations [8].

Inspired by the work of Lepoutre, we reformulate the planar blossoming bijection of [3] in a way that
naturally extends to higher genus. Thus, we obtain a blossoming bijection between constellations and
some blossoming unicellular maps that also extends the bijection of [8]. Using this bijection, we are able
to enumerate a particular case of constellations on the torus.

2. Constellations and m-bipartite unicellular maps

2.1 Constellations

Definition 2.1. Let m ≥ 2. We say that a map whose faces are bicolored (black and white) is an m-
constellation (Figure 2a) if

(i) adjacent faces have different colors,

(ii) black faces have degree m and white faces have degree mi for some integer i ≥ 1 (which can be
different among white faces),

(iii) vertices can be labeled with integers in {1, 2, ... , m} in such a way that turning clockwise around any
black face the labels read 1, 2, ... , m.
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A rooted constellation is a constellation that is rooted on a white corner. The first edge found when
turning counterclockwise around the root vertex starting from the root corner is called the root edge. Note
that the root corner can be recovered from the root edge, so it is equivalent to root a constellation on a
white corner or on an edge.

The dual of an m-constellation is called an m-Eulerian map (Figure 2b). The dual of a rooted m-con-
stellation (resp. rooted m-Eulerian map) is a rooted m-Eulerian map (resp. rooted m-constellation) with
the “same” root. In other words, the root vertex, the root face and the root edge become, respectively,
the root face, the root vertex and the root edge through dualization.

0

1

2

1

21

2

3

1

2

(a) A rooted 3-constellation of genus 1 endowed with its
canonical orientation and labelling. The root is pointed
by the double arrow.

(b) A rooted 3-constellation of genus 1 (blue) with its
dual rooted 3-Eulerian map (black). Their roots are
pointed by the double arrows.

Figure 2: A constellation and its dual map.

Consider a rooted m-constellation. The canonical orientation of its edges is the orientation for which
its edges turn clockwise around black faces. When endowed with this orientation, the canonical labelling
(Figure 2a) of its vertices is obtained by labelling every vertex with the length of the shortest oriented path
to it from the root vertex.

This orientation and labelling was introduced by Bouttier, Di Francesco and Guitter in [4] for planar
constellations to define what is now known as the BGD bijection.

2.2 Blossoming unicellular maps

Blossoming bijections were introduced by Schaeffer in [9] to put some classes of planar maps in bijection
with decorated trees. These bijections consist in selecting a canonical spanning tree (or, more generally, a
canonical spanning submap) and cut into two half-edges the edges not belonging to it. The resulting map
is said to be a blossoming map, which can be closed back into the original map.

http://reportsascm.iec.cat16

http://reportsascm.iec.cat


Jordi Castellv́ı

A blossoming map is a map with stems (that can be viewed as half-edges) attached to its vertices.
There are two types of stems: outstems, which are outgoing stems, and instems, which are ingoing stems.
Stems separate corners as if they were edges, which means that they count towards the (total) degree of
their vertex. We will use the term inner degree when we want to ignore stems, i.e., when we only count
the number of incident edges to a vertex (loops are counted twice).

A rooted blossoming map is a blossoming map with a marked instem, which is called the root (instem).
The vertex to which the root is attached is called the root vertex and the face incident to the root is called
the root face. The corner on the right side of the root is called the root corner.

From now on we only consider blossoming maps that are unicellular.

The good orientation of a rooted unicellular blossoming map is the orientation for which every edge
is, first, followed backwards and, then, forwards in tour around the unique face starting at the root corner.
Note that it does not matter whether the face is followed clockwise or counterclockwise.

Given a rooted unicellular blossoming map which has m more instems than outstems, we can label its
corners in the following way (Figure 3a). We make a counterclockwise tour around its unique face starting
at the first corner after the root corner. Along this tour, we will visit every corner once and we will label it
with the value of a counter that starts at m − 1, increases by 1 every time we encounter an outstem and
decreases by 1 every time we encounter an instem. The result of this procedure is called the good labelling
of the unicellular blossoming map.

We say that an edge or stem increases (resp. decreases) by d if the value of its left label(s) minus the
value of its right label(s) is d (resp. −d). Observe that, since there are m more instems than outstems,
the last corner to label, which is the root corner, has good label 0.

2.3 m-bipartite unicellular maps

In [3], Bousquet-Mélou and Schaeffer define some objects called m-Eulerian trees and they construct a
bijection between them and planar constellations. Here, we give a generalization of these objects to higher
genus (m-bipartite unicellular maps) that we will show to be in bijection with constellations of higher genus.

Definition 2.2. Let m ≥ 2. We say that a rooted unicellular blossoming map with m more instems than
outstems and whose vertices are bicolored is an m-bipartite unicellular map (Figure 3a) if

(i) neighbouring vertices have different colors, instems are attached to white vertices and outstems are
attached to black vertices,

(ii) black vertices have degree m,

(iii) white vertices have degree mi for some integer i ≥ 1 (which can be different among white vertices),

and, when endowed with its good labelling,

(iv) the edges whose origin is a black vertex either decrease by 1 or increase by m − 1,

(v) the edges whose origin is a white vertex decrease by m − 1.
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Given an m-bipartite unicellular blossoming map, consider the cyclic word formed by its stems in the
order they appear in a counterclockwise tour around the face. Outstems are represented by the letter o
and instems are represented by the letter i . Now we match letters o and i as if they were opening and
closing parentheses, respectively. First, every letter o immediately followed by a letter i is matched with it.
Then, all matched letters are removed and this procedure is repeated until no more matchings are possible
(Figure 3b). Since there are exactly m more instems than outstems, m instems remain unmatched. We
call these instems single. Note that the matching described is the only possible one, since, in a correct
parenthesis word, an opening parentheses next to a closing one always have to be matched and can be
ignored from that point on.

An m-bipartite unicellular map is well-rooted if its root instem is single. Well-rootedness can be char-
acterized in the following way.

Proposition 2.3. An m-bipartite unicellular map U is well-rooted if and only if its good labels are non
negative.

3. The bijection between m-constellations and m-
bipartite unicellular maps

In this section we present our main result:

Theorem 3.1. Rooted m-constellations of genus g with di white faces of degree mi are in bijection with
well-rooted m-bipartite unicellular maps of genus g with di white vertices of degree mi.

3.1 The closure Φ

We first describe how a well-rooted m-bipartite unicellular map can be closed to obtain an m-Eulerian map.

Definition 3.2. Let U be a well-rooted m-bipartite unicellular map. Let r be its root vertex. We define
the closure Φ(U) of U in the following way (Figure 3).

First, every pair of matched stems b, l is connected to form a complete edge. The fact that the matched
stems of U form a valid parentheses word ensures that these new edges can be drawn without intersections.

After this, there are m unmatched instems, including the root. Place a black vertex s with m outstems
attached to it in the unique face and connect each of the outstems to a different unmatched instems. It is
clear that this can also be done without intersections.

The final result, Φ(U), is a map. We choose to root it on the same corner as U or, equivalently, on
the edge joining r and s.

Lemma 3.3. The closure Φ(U) of a well-rooted m-bipartite unicellular map U of genus g with di white
vertices of degree mi is a rooted m-Eulerian map of genus g with di white vertices of degree mi. Moreover,
the good labelling of the corners of U corresponds to the canonical labelling of the faces of Φ(U).

Proof sketch. The rules of good labels around stems ensure that the closure is a rooted m-Eulerian map.
Moreover, the canonical labels are at least as large as the good ones because when turning clockwise around
black vertices the good labels either increase by one or decrease by m− 1, and the equality holds because
there is a path from the root face to any other face that crosses only edges created by joining stems.
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Figure 3: The closure of a well-rooted 3-bipartite unicellular map.

3.2 The opening Ψ

Here we do the inverse transformation, that is, starting from a rooted m-Eulerian map, cut some of its
edges into stems so that the result is a well-rooted m-bipartite unicellular map.
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Definition 3.4. Let M be a rooted m-Eulerian map. We define its opening Ψ(M) in the following way
(Figure 4). First, consider the dual map C of M, which is a rooted m-constellation. Endow C with its
canonical orientation and labelling and take its leftmost Breadth-First Search (BFS) exploration tree T .
For every edge of M whose dual belongs to T , cut it into two stems: an instem attached to the white
vertex and an outstem attached to the black one. Finally, cut the root edge and remove s.

We root the result of this, Ψ(M), at the instem created when cutting the root edge.
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Figure 4: The opening of a rooted 3-Eulerian map.
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Lemma 3.5. The opening Ψ(M) of a rooted m-Eulerian map M of genus g with di white vertices of
degree mi is a well-rooted m-bipartite unicellular map of genus g with di white vertices of degree mi.
Moreover, the canonical labelling of M corresponds to the good labelling of Ψ(M) and

Φ(Ψ(M)) = M.

Proof sketch. The only difficulty here is to show that, after the opening, there can be no edge oriented
from white to black that increases by 1. If there was one such edge, the leftmost BFS tree would have
seen, first, its left side and, then, its right side, which would be a contradiction.

So far we have shown that the closure of a well-rooted m-bipartite unicellular map is a rooted m-Eulerian
map and that the opening of a rooted m-Eulerian map is a well-rooted m-bipartite unicellular map whose
closure is the original map. To show that Φ and Ψ are inverse operations and, thus, to prove Theorem 3.1,
we just need the following lemma.

Lemma 3.6. Let U be a well-rooted m-bipartite unicellular map. Then,

Ψ(Φ(U)) = U.

Proof sketch. Similarly, here one needs to prove that the duals of the edges that are created during the
closure by joining stems form a leftmost BFS tree.

Remark 3.7. The m-Eulerian trees described in [3] by Bousquet-Mélou and Schaeffer are the planar instances
of the m-bipartite unicellular trees we have introduced here. We use the same closing operation as they
do, but flipping the orientation of the surface, which amounts to swapping the notions of left-right and
clockwise-counterclockwise. Thus, when we restrict our bijection to the sphere, we recover their bijection.

Remark 3.8. In [8], Lepoutre gives a bijection between bicolorable maps of arbitrary genus and an adequate
family of blossoming unicellular maps. It is easy to convince oneself that bicolorable maps are, in fact,
2-Eulerian maps whose black vertices have been replaced by a single edge connecting their two white
neighbours (Figure 5).

(a) A planar Eulerian map. (b) A planar 2-Eulerian map.

(c) The dual map of 5a. (d) The dual map of 5b: a planar
2-constellation.

Figure 5: The relation between bicolorable maps and 2-Eulerian maps.
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Bijective enumeration of constellations in higher genus

In his bijection, Lepoutre opens bicolorable maps in a way that he shows to be equivalent to the following
one. First, take the dual of the bicolorable map, which is a bipartite map, and endow it with its geodesic
orientation. Then, consider the leftmost BFS exploration tree of this oriented bipartite map and, finally, cut
all the edges of the bicolorable map whose dual does not belong to the tree. This is essentially the same
way in which we open 2-Eulerian maps: the difference between our canonical orientation of 2-constellations
(we orient vertices clockwise around black faces) and Lepoutre’s geodesic orientation of the bipartite map
is explained by the fact that he has collapsed the black faces of the 2-constellation into edges to obtain the
bipartite map. Therefore, we can say that our bijection also generalizes the one given by Lepoutre in [8].

4. Rerooting an m-bipartite unicellular map

After Theorem 3.1 has been established, one can try to enumerate rooted constellations by enumerating
well-rooted m-bipartite unicellular maps.

The first problem we run into when trying to count well-rooted m-bipartite unicellular maps is precisely
the fact that they are well-rooted. As Lepoutre explains in [8], well-rootedness is a global notion, since
it requires the positivity of all the good labels of a map. This complicates the task of counting these
objects and, thus, we would like to get rid of it. In order to do so, we use the technique of rerooting first
introduced in [9] and which was successfully used in [3] and [8]. Specifically, we provide an algorithm to
reroot a well-rooted map on any instem, which will later yield an enumerative relation between m-bipartite
unicellular maps and well-rooted m-bipartite unicellular maps.

Definition 4.1. Let U be a rooted m-bipartite unicellular map, let r be its root and let t be a distinguished
instem of U. We endow U with its good orientation and its good labelling.

The rerooting algorithm is defined as follows. If t = r , we do nothing. Otherwise, we first join r and t
to create an edge. This divides the single face of U into faces fL and fR , where fL is the one containing
the root corner of U. We then add m to all labels of fL and we reverse the orientation of all the edges that
separate fL and fR . Finally, we cut the edge joining r and t back into two instems and we swap the roles
of r and t: t becomes the root and r becomes the distinguished instem.

The rerooting procedure always produces a valid m-bipartite unicellular map. This is why we say that
these maps are stable under rerooting. Furthermore, it allows us to prove the following:

Proposition 4.2. m-bipartite unicellular maps with a distinguished single instem are in bijection with
well-rooted m-bipartite unicellular maps with a distinguished instem.

5. Enumeration of bipartite 3-face-colorable cubic
maps on the torus

In this section, we prove our second theorem:

Theorem 5.1. Bipartite 3-face-colorable cubic maps of genus 1 are enumerated by

C (z) =
T (z)3

(1− T (z))(1− 4T (z))2
,

where z marks the number of white vertices and T (z) is the unique generating function satisfying T (z) =
z + 2T (z)2. In particular, C (z) is a rational function of T (z).
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Bipartite 3-face-colorable cubic maps of genus 1 are 3-Eulerian maps of genus 1 whose white vertices
all have degree 3. This is a very particular case compared to the general m-constellations of arbitrary genus
for which we have built a bijection, but it allows for relatively simple calculations that can be done by hand.

Generating functions are formal power series whose n-th coefficient equals the number of objects of
size n in some combinatorial class. For example, if C is the class of rooted bipartite 3-face-colorable cubic
maps of genus 1, counted by their number of white vertices, then C (z) =

∑
n≥0 cnzn is their generating

function in the sense that there are exactly cn such maps with n white vertices. We use the Symbolic
Method to translate the relations between the combinatorial classes (classes of graphs in our setting) into
equations involving their generating functions.

Let O be the class of well-rooted 3-bipartite unicellular maps of genus 1 whose white vertices have
degree 3, counted by their number of instems. Since the number of instems of a map o ∈ O is equal to
the number of white vertices of its closure c ∈ C, C (z) = O(z).

Let U be the class of 3-bipartite unicellular maps of genus 1 whose white vertices have degree 3 counted
by their number of instems different from the root. By Proposition 4.2, we have the following.

Lemma 5.2. The generating functions of O and U satisfy the relation

O(t) = 3

∫ t

0
U(z) dz .

5.1 The pruned maps and their enumeration

We follow the framework introduced by Chapuy, Marcus and Schaeffer in [6] to study unicellular maps.

The extended scheme of a map u ∈ U is the map obtained by, first, removing all its stems and, then,
iteratively removing all its vertices of degree 1. This procedure only removes stems and treelike parts from
the map, so an extended map is also a unicellular map. In fact, any map u ∈ U can be decomposed into
an extended scheme and some attached stems and treelike parts.

An extended scheme can only have vertices of degree 2, which we call branch vertices, and vertices of
degree 3, which we call scheme vertices. The treelike parts can only be attached to white branch vertices.
In our setting, there are always exactly two scheme vertices and they are black.

Let T be the class of these attachable treelike parts, counted by their number of instems. For the sake
of simplicity, we will consider that a single instem is a treelike part and belongs to T . It is easy to see that
the generating function of T satisfies the following recursive relation:

T (z) = z + 2T (z)2.

Let u ∈ U be a 3-bipartite unicellular map whose white vertices have degree 3. Its pruned map p is
obtained by replacing all its treelike parts by instems. The treelike part containing the root is replaced by a
root instem. Let P be the class obtained by pruning every map in U . The pruned maps of P are counted
by their number of instems different from the root. Observe that, if we keep the good labels on the pruned
map, the rules of the labelling still apply. In other words, P ⊂ U .

Lemma 5.3. The generating functions of U , P and T satisfy the relation

U(z) =
∂T

∂z
P(T (z)).
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Proof sketch. Each stem in the pruned map is replaced by a tree and the root stem is replaced by a tree
with a marked leaf that becomes the new root.

We would now like to enumerate P.

The labelled scheme of a pruned map p ∈ P is obtained by removing all its branch vertices except for
the one where the treelike part containing the root was attached. The good labels of the remaining corners
are kept.

It is clear that labelled schemes are uniquely determined by the lowest label on each of its scheme
vertices (Figure 6a). There is, thus, a correspondance between labelled schemes and pairs (i , j) ∈ Z2.

0 2 j + 2

1
jj + 1

i

i+ 1

i+ 2

(a) A generic labelled scheme.

i i i i

i i

i i

i + 1 i + 1 i + 1 i + 1

i + 1 i + 1

i + 1 i + 1i + 1

i− 1

i− 1 i

i− 1i + 2 i + 2

i + 2

(b) The first step of a branch.

Figure 6: Counting the pruned maps.

The labelled scheme associated to the pair (i , j) will be denoted li ,j , and the subclass of pruned maps
that have li ,j as labelled scheme will be denoted Pi ,j . Given (i , j) ∈ Z2, we want to compute Pi ,j(z). To
do so, we replace every edge of li ,j by a valid branch whose labels agree with the labels of li ,j . A branch
starts at a black vertex. There are four ways to place the stems of the first two vertices (Figure 6b).

The generating functions of branches are obtained by using weighted Motzkin paths. Multiplying the
four branches in a given li ,j and summing over all pairs (i , j) gives the following:

P =
∑
i ,j∈Z

Pi ,j = · · · =
z2(2z − 1)

(z − 1)2(4z − 1)3
.

We can finally conclude the proof of Theorem 5.1:

C (z) = O(t) = 3

∫ t

0
U(z) dz = 3

∫ t

0

∂T

∂z
P(T (z)) dz

= 3

(∫ z

0
P(η) dη

)
|z=T (t)

=
T (z)3

(1− T (z))(1− 4T (z))2
.
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In view of Theorem 5.1, we can formulate the following conjecture.

Conjecture 5.4. Bipartite 3-face-colorable cubic maps of arbitrary genus are enumerated by a generating
function which is a rational function of T (z).

Since blossoming bijections in [8] produce enumerative results in which there is scheme by scheme
rationality, we hope that will also be the case for these maps.
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