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Resum (CAT)
Hem estudiat els compactes que suporten mesures de Zygmund, dels quals no se’n

coneix cap caracterització. Hem introdüıt un concepte anomenat log-porositat,

que proporciona una condició suficient per tal que un compacte no pugui ser el

suport d’una mesura de Zygmund. Hem vist que aquest resultat no deriva dels

treballs de Makarov ni Kaufman. Hem introdüıt el concepte de capacitat Zygmund

d’un compacte i hem proposat una caracterització dels suports de les mesures de

Zygmund en termes d’aquesta capacitat. Hem demostrat que els compactes pels

quals el ĺımit d’aquesta capacitat és zero, no poden suportar mesures de Zygmund.

Abstract (ENG)
We analyse the compact sets that are the support of Zygmund measures, of which no

characterisation is known. We introduce the concept of log-porosity which provides

a sufficient condition that guarantees that a compact cannot be the support of

a Zygmund measure. This result does not derive from the results of Makarov and

Kaufman. We introduce the concept of Zygmund capacity of a compact and propose

a characterisation of the supports of Zygmund measures in terms of this capacity.

We prove that the compact sets for which the limit of this capacity is zero cannot

be the support of Zygmund measures.
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Zygmund measures

1. Introduction

A positive finite measure µ in R is called a Zygmund measure if there exists a constant C such that
|µ(I ) − µ(I ′)| ≤ C |I | for all pairs of adjacent intervals I , I ′ of the same length |I |. The infimum of the
values of C for which the inequality holds is called the Zygmund norm of µ and is denoted by ‖µ‖∗.

It can be seen that a positive measure is a Zygmund measure if and only if its distribution function
belongs to the Zygmund space Λ∗, defined as the set of real-valued and bounded functions such that

‖f ‖∗ = sup
x ,h∈Rn

|f (x + h) + f (x − h)− 2f (x)|
‖h‖

< +∞. (1)

Let us recall the definition of Hausdorff measure. A measure function is an increasing continuous
function ϕ : [0, δ) → R+ such that ϕ(0) = 0. Let E ⊂ R be a bounded set, we define the Hausdorff
measure of E with respect to ϕ as

Hϕ(E ) = lim
ε→0

inf

∑
j

ϕ(|Ij |) : E ⊂
⋃
j

Ij and |Ij | ≤ ε

 .

If ϕ(t) = tα for some α > 0, then we will write Hα(E ).

Frostman’s Lemma ([7, p. 112]) states that a compact set K is the support of a Lipα measure if and
only if Hα(K ) > 0. As a consequence, compact sets that are the support of Lipα measures are completely
determined. Although Zygmund measures can be considered as the limit of Lipα measures as α → 1
(see [8]), a characterisation of the compact sets that are the support of Zygmund measures is not known.

2. Preliminary results

Clearly, the Lebesgue measure restricted to a positive measure set is a Zygmund measure. The following
theorem proves the existence of a Zygmund measure whose support has zero Lebesgue measure.

Theorem 2.1 (Kahane). There exists a positive singular Zygmund measure.

Sketch of proof. In [3], Kahane proved his theorem by geometrically building a Zygmund measure whose
support has zero Lebesgue measure.

Let Qn denote the tetradic intervals of length 4−n and let us define the following succession of simple
functions: s0 ≡ 1 and sn(x) = sn−1(x) + εn(x), where

εn(x) =

{
−1 if x ∈ I1 ∪ I4,

1 if x ∈ I2 ∪ I3,

and I1, I2, I3, I4 ∈ Qn such that1 I1 ∪ I2 ∪ I3 ∪ I4 = Ij ∈ Qn−1 and x ∈ Ij .

1We consider Ik to the left of Ik+1, for k = 1, 2, 3.
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Let us consider the stopping time τ(x) = inf{n : sn(x) = 0}. Cleary, τ(x) < ∞ for almost all x . Let
us build the succession of measures defined by dµn = sn∧τ dx , where n ∧ τ = min{n, τ} and dx is the
Lebesgue measure. It can be seen that µn is a positive probability measure. In addition, if we denote by µ
the limit of µn as n→∞, it can be seen that µ is a Zygmund measure and its support has zero Lebesgue
measure.

Theorem 2.2 (Makarov). If µ is a positive Zygmund measure, then µ is absolutely continuous with respect
to HΦ, where

Φ(t) = t

√
log

(
1

t

)
· log log log

(
1

t

)
. (2)

In addition, there exists a Zygmund measure ν which satisfies 0 < HΦ(supp (ν)) <∞.

Makarov’s Theorem provides the optimal measure function φ such that if a compact set K has Hφ(K ) =
0, then it cannot be the support of a Zygmund measure. The proof of the first and second statements of
Makarov’s Theorem can be found in [6] and [5] respectively.

Theorem 2.3 (Kaufman). For each measure function h such that lim
t→0

t
h(t) = 0, there exists a compact

set K with Hh(K ) > 0 which is not the support of a Zygmund measure.

Kaufman’s Theorem implies that it is impossible to characterise the supports of Zygmund measures in
terms of Hausdorff measures. In [4], Kaufman proved his theorem by introducing a special class of sets: A
compact set E is called porous (with a parameter a > 0) if, for each δ > 0, there exists a covering of E
by disjoint open intervals Iεt (xt) = (xt − εt , xt + εt) such that εt < δ and each interval Iεt (xt) contains an
interval Iaεt (x ′t) = (x ′t − aεt , x ′t + aεt) ⊂ Iεt (xt) disjoint from E .

Kaufman proved that porous sets cannot be the support of Zygmund measures and that for each
function h that satisfies the hypothesis of Theorem 2.3, there exists a porous set K with Hh(K ) > 0.

Proof. Let S = {n1 < n2 < · · · < nk < nk+1 < · · · } be a sequence of positive integers whose complement
is infinite and let us define

E =

{ ∞∑
k=1

εk 2−nk

∣∣∣∣∣ εk ∈ {0, 1} ∀k

}
.

Let m be an integer not in S and let x ∈ E . Then a ≤ 2m−1x ≤ a+ 1
2 for some a ∈ N0 and consequently,

each element of E has distance ≤ d = 2−m−1 from one of the centres
{(

q + 1
4

)
21−m | q ∈ N0

}
. The

distance between two consecutive centres is 4d , hence E is porous.

We need to define S so that Hh(E ) > 0. Let ψ be a positive function such that lim
t→0+

t · ψ(t) = 0

and lim
t→0+

h(t) · ψ(t) = ∞. We build S as {b− log2(ψ−1(2k))c : k ∈ N}. It can be seen that, with this

definition, |Sc ∩N| =∞ and lim
k→∞

2kh(2−nk ) =∞. Let ν be a probability measure with support in E such

that each interval I ∈ Dnk has measure O(2−k). Let I be an interval of length r small and let k be an
integer such that 2−nk ≥ r > 2−nk+1 . We define J as the interval of length 2−nk and the same centre as I .
Therefore,

ν(I ) ≤ ν(J) ≤ O(1) · ν(I
nk+1

j ) = O(1) · 2−k−1 < O(1) h(2−nk+1) ≤ O(1) h(r) = O(1) h(|I |),

as lim
k→∞

2kh(2−nk ) =∞. Consequently, Hh(E ) = lim
ε→0

inf
{∑

j
h(|Ij |) : E ⊂

⋃
Ij , |Ij | ≤ ε

}
> 0.
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Zygmund measures

We will introduce a generalisation of porosity in order to prove that porous sets cannot be the support
of a nontrivial Zygmund measure.

Given a compact set K ⊂ R and a closed interval I , let us denote by I ∗ the biggest open interval in I ,
disjoint from K and satisfying 2|I ∗| ≤ |I |.

Definition 2.4. Let K ⊂ R be a compact set of zero Lebesgue measure. We say K is log-porous if

lim
ε→0

inf

∑
j≥1

|Ij | log

(
|Ij |
|I ∗j |

)
: K ⊂

⋃
j≥1

Ij , with pairwise disjoint interiors and |Ij | < ε

 = 0.

Theorem 2.5. A log-porous set cannot be the support of a Zygmund measure.

Theorem 2.6. There exists a log-porous compact set K such that it is nonporous and HΦ(K ) > 0, where Φ
is the function defined in (2).

It can be easily seen that porous sets are log-porous. Theorem 2.6 implies that Theorem 2.5 is not a
consequence of Makarov’s Theorem or Kaufman’s Theorem. In order to prove Theorem 2.5 we will need
the following result.

Proposition 2.7. Let f ∈ Λ∗. Then for any t ∈ (0, 1) and a, b ∈ R,

|(1− t)f (a) + tf (b)− f ((1− t)a + tb)| ≤ C‖f ‖∗ϕ(t)|b − a|,

where C is an absolute constant and ϕ(t) = t log 1
t if t ≤ 1/2 and ϕ(t) = ϕ(1− t) if t ≥ 1/2.

The proof of Proposition 2.7 can be found in [1].

Proof of Theorem 2.5. Let K ⊂ (0, 1) be a log-porous compact set. Let µ be a positive Zygmund measure
with support in K and let f be its distribution function. Given η > 0 small, there exists ε > 0 and a
covering by closed intervals {Ij} given by the definition of log-porosity, such that |Ij | < ε ∀j ≥ 1 and∑

j≥1 |Ij | log
( |Ij |
|I∗j |
)
< η.

Let us denote Ij = (aj , bj) and I ∗j = (cj , dj) ⊂ Ij . We define ρj =
|I∗j |
|Ij | and x =

cj−ρjaj
1−ρj =

dj−ρjbj
1−ρj . Note

that f (dj) = f (cj) since K ∩ (cj , dj) = ∅. By Proposition 2.7, we have

ρj |f (bj)− f (aj)| = |ρj f (bj)− ρj f (aj) + f (cj)− f (dj) + (1− ρj)f (x)− (1− ρj)f (x)|

≤ |ρj f (bj) + (1− ρj)f (x)− f (dj)|+ |ρj f (aj) + (1− ρj)f (x)− f (cj)|

≤ Cϕ(ρj)(bj − x) + Cϕ(ρj)(aj − x) = Cϕ(ρj)(bj − aj),

and, as a consequence, |f (bj) − f (aj)| ≤ C |bj − aj | 1
ρj
ϕ(ρj) = C |bj − aj | log

(
1
ρj

)
= C |Ij | log

( |Ij |
|I∗j |
)
, since

ρ ≤ 1
2 . Therefore µ(K ) = f (1)− f (0) ≤ C

∑
j≥1 |Ij | log

( |Ij |
|I∗j |
)
< C · η.

As η is arbitrarily small, we conclude that µ(K ) = 0 and µ must be the trivial measure.
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Proof of Theorem 2.6. Let us consider, in [0, 1], the function defined by

ϕ(t) =

0 if t = 0,
t

4
√

log2(2/t)
if t ∈ (0, 1].

Note that ϕ is increasing and convex, therefore 2ϕ(2−n−1) < ϕ(2−n).

The compact will be constructed inductively in a similar way as the Cantor set. Let E0 = I 0
1 = [0, 1] and

let En =
⋃2n

j=1 I nj . For each closed interval I nj , we consider I n+1
2j−1 and I n+1

2j the two closed corner intervals

of I nj of length ϕ(2−n−1). Then we construct En+1 as En+1 =
⋃2n+1

j=1 I n+1
j . Finally, we set K =

⋂
n≥1 En.

Firstly, we will see that K is log-porous. For n ≥ 0, let us consider the covering of K given by
⋃2n

j=1 I nj .

By construction, for each I in the covering, the length of I ∗ is ϕ(2−n)− 2ϕ(2−n−1). As a result,

2n∑
j=1

|I nj | log

(
|I nj |
|I n∗j |

)
= 2nϕ(2−n) log

(
ϕ(2−n)

ϕ(2−n)− 2ϕ(2−n−1)

)
=

1
4
√

n + 1
log

(
4
√

n + 2
4
√

n + 2− 4
√

n + 1

)

which goes to 0 as n tends to infinity. Now we will see that HΦ(K ) > 0. Let us define λ0 = 1 and
λn = 1

2λn−1(x) if x ∈ I nj for some j and λn = 0 otherwise. We consider the succession of measures dνn =

ϕ(2−n)λn dx , and we denote by ν the limit of νn. Note that ν is a positive probability measure with support
in K and such that ν(I nj ) = 2−n for all j .

By a similar argument as the one used in the proof of Theorem 2.3, we conclude that Hϕ−1(K ) > 0.
Since ϕ−1(t) = o(Φ(t)) as t → 0+, by the comparison lemma between Hausdorff measures (see [2, p. 60]),
we conclude that HΦ(K ) =∞.

In order to prove that K is nonporous, we assign, to each x ∈ K , a succession (δn(x)) of 0′s and 1′s
in the following way: if x ∈ I n2j−1 for some j , we set δn(x) = 0; if x ∈ I n2j , we set δn(x) = 1. Let E be the
set of x ∈ K such that there exists n0 = n0(x) such that, for n ≥ n0, δn(x) 6= δn+1(x).

We assume that K is porous with parameter 0 < ρ < 1 and consider the associated covering of K .
If x ∈ E , let I be the interval of the aforementioned covering containing x . We choose n ∈ N such that
ϕ(2−n−1) < |I | ≤ ϕ(2−n). By election of x , the length of the biggest interval contained in I and disjoint
of K is less than ϕ(2−n+2)− 2ϕ(2−n+1). Therefore, ρϕ(2−n−1) ≤ ρ · |I | ≤ ϕ(2−n+2)− 2ϕ(2−n+1) and, as
a result

ϕ(2−n+2)− 2ϕ(2−n+1)

ϕ(2−n−1)
≥ ρ.

We have reached a contradiction, since the left expression goes to 0 as n tends to infinity.

3. An approach to the characterisation of the sup-
ports of Zygmund measures

Our aim is to find a characterisation of the compact sets that support Zygmund measures, i.e., the compact
sets K for which sup{µ(K ) : supp(µ) ⊂ K , µ ≥ 0, ‖µ‖∗ ≤ 1} > 0, where µ is a Zygmund measure.
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Zygmund measures

To that end, we will approximate K as the union of closed dyadic intervals and we will determine the
maximum mass a fixed-norm Zygmund measure can have. We will use the following notation to denote
the dyadic intervals of length 2−n:

Dn =

{[
k

2n
,

k + 1

2n

) ∣∣∣∣ k ∈ {0, 1, ... , 2n − 1}
}

.

Lemma 3.1. Let K ⊂ (0, 1) be the union of 2−n-length closed dyadic intervals. Let µ be a positive measure
with suppµ ⊆ K and constant density over each interval in Dn. If the following condition holds, µ is a
Zygmund measure with support in K and ‖µ‖∗ ∼ C .

|µ(I )− µ(I ′)| ≤ C |I |, where I , I ′ ∈ Dk are adjacent and k ≤ n.

This lemma can be easily proven using a variation of the proof of Kahane’s Theorem and we will use
it to attempt to determine a geometrical characterisation of the compact sets that support a Zygmund
measure. With that goal, we shall introduce the concept of Z-2k sequences.

Definition 3.2. Let n ∈ N and 0 ≤ k ≤ n. A number sequence x1 x2 ... x2n−k is said to be Z-2k if the
following conditions hold. 

xj ≥ 0 ∀j ,

|xj − xj−1| ≤ 2k j = 2, ... , 2n−k ,

xj ≤ 2k j = 1, 2n−k .

Let K ⊆ [0, 1] be a compact set and let n ∈ N. Firstly, we will associate a density D(n)
n to each

interval I nj ∈ Dn in order for it to be a Z-1 sequence. Specifically, D(n)
n will be constructed as the

maximal Z-1 sequence such that if I nj ∩ K = ∅, then D(n)
n (I nj ) = 0. Secondly, we will associate, to

each interval I n−1
j ∈ Dn−1, the maximal density D(n)

n−1 such that the resulting sequence is Z-2 and that

D(n)
n−1(I n−1

j ) ≤ D(n)
n (I n2j) +D(n)

n (I n2j+1). Iterating this process we will obtain a density D(n)
0 ([0, 1]). The limit

of 2−nD(n)
0 ([0, 1]) as n → ∞ bounds the maximum mass a Zygmund measure defined on the intervals

of Dn that intersect K and with controlled ‖µ‖∗ can have.

Let us formally define the densities D(n)
k associated to each dyadic interval in Dk for k ≤ n. We start

by defining D(n)
n . Given an interval I nj ∈ Dn for j = 0, 1, ... , 2n − 1, we define

D−n (I nj ) =

{
0 if I nj ∩ K = ∅,
D−n (I nj−1) + 1 if I nj ∩ K 6= ∅,

and analogously,

D+
n (I nj ) =

{
0 if I nj ∩ K = ∅,
D+

n (I nj+1) + 1 if I nj ∩ K 6= ∅,

with the convention I n−1 =
[−1

2n , 0
)
, I n2n =

[
1, 1 + 1

2n

)
and D−n (I n−1) = D+

n (I n2n) = 0. Finally, we denote

D(n)
n (I nj ) = min{D−n (I nj ),D+

n (I nj )}.
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Now we define Dn−k(I n−kj ) for each dyadic interval I n−kj ∈ Dn−k for 1 ≤ k ≤ n. To do so, let us consider

the two intervals J, J ′ ∈ Dn−k+1 such that J, J ′ ⊆ I n−kj . We denote

Sn−k(I n−kj ) = D(n)
n−k+1(J) +D(n)

n−k+1(J ′),

and we proceed as before, setting

D−n−k(I n−kj ) = min{D−n−k(I n−kj−1 ) + 2k , Sn−k(I n−kj )},

D+
n−k(I n−kj ) = min{D+

n−k(I n−kj+1 ) + 2k , Sn−k(I n−kj )},

with the convention D−n−k(I n−k−1 ) = D+
n−k(I n−k

2n−k ) = 0. Finally, we define

D(n)
n−k(I n−kj ) = min{D−n−k(I n−kj ), D+

n−k(I n−kj )}.

Hence, we built the densities D(n)
n ,D(n)

n−1, ... ,D(n)
0 . Finally, we define the Zygmund Capacity as

Cn(K ) = 2−nD(n)
0 ([0, 1]).

Let K ′ be the compact set formed by the union of the dyadic intervals in Dn which intersect K . By
construction, Cn(K ) is an upper bound to the mass of any Zygmund measure with support in K ′.

Proposition 3.3. For each compact set K ⊂ [0, 1], ∃ lim
n→∞

Cn(K ).

Proof. By construction, Cn(K ) ≥ 0 ∀n. In order to prove that the limit exists, it suffices to see that the
succession (Cn(K ))n is decreasing. Let I nj ∈ Dn be an interval such that I nj ∩K = ∅ and let I n+1

2j , I n+1
2j+1 be

the two intervals of Dn+1 contained in I nj . Clearly, I n+1
2j and I n+1

2j+1 are disjoint from K . Hence,

D(n)
n (I nj ) = 0 =⇒ D(n+1)

n (I nj ) = 0.

Alternatively, if I nj ∩ K 6= ∅, then D(n)
n (I nj ) = a > 0. Therefore, we conclude that D(n+1)

n (I nj−a) = 0 or

that D(n+1)
n (I nj+a) = 0. Consequently, D(n+1)

n (I nj ) ≤ 2a. This implies that D(n+1)
n (I nj ) ≤ 2D(n)

n (I nj ) for all j ,

so D(n+1)
0 ([0, 1]) ≤ 2D(n)

0 ([0, 1]). As a consequence, Cn+1(K ) ≤ Cn(K ).

Theorem 3.4. Let K ⊆ [0, 1] a compact set. If lim
n→∞

Cn(K ) = 0, K cannot be the support of a nontrivial

Zygmund measure.

Proof. Let µ be a Zygmund measure with support in K . We will prove that µ must be the trivial measure.
Let us assume, without loss of generality, that ‖µ‖∗ ≤ 1. Given n ∈ N, let 0 ≤ k ≤ n be an integer. We

will prove by induction on k that µ(I n−kj ) ≤ 2−nD(n)
n−k(I n−kj ) for all I n−kj ∈ Dn−k .

It is clear that if I n−kj ∩ K = ∅, the inequality holds, so let us assume that I n−kj ∩ K 6= ∅.

Firstly, we will show that the inequality holds for k = 0. Let I nj ∈ Dn be a dyadic interval and let
I nj−` ∈ Dn be the closest interval to I nj such that I nj−` ∩K = ∅. Note that −2n + j ≤ ` ≤ j + 1 and we can
assume, without loss of generality that ` > 0. Therefore,

µ(I nj )

|I nj |
≤ 1 +

µ(I nj−1)

|I nj |
≤ 1 + 1 +

µ(I nj−2)

|I nj |
≤ · · · ≤ `+

µ(I nj−`)

|I nj |
= ` = D(n)

n (I nj )

7Reports@SCM 7 (2022), 1–12; DOI:10.2436/20.2002.02.28.
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and µ(I nj ) ≤ 2−nD(n)
n (I nj ). Let us assume the inequality holds for n− k + 1 where 1 ≤ k ≤ n is fixed, and

we will prove it holds for n − k . On one hand we have

µ(I n−kj ) = µ(I n−k+1
2j ) + µ(I n−k+1

2j+1 ) ≤ 2−n(D(n)
n−k+1(I n−k+1

2j ) +D(n)
n−k+1(I n−k+1

2j+1 )),

since µ is a measure and I n−kj = I n−k+1
2j ∪ I n−k+1

2j+1 . On the other hand,

µ(I n−kj )

|I n−kj |
≤ 1 +

µ(I n−kj−1 )

|I n−kj |
=⇒ µ(I n−kj ) ≤ 2−n+k + µ(I n−kj−1 ).

Analogously, µ(I n−kj ) ≤ 2−n+k + µ(I n−kj+1 ). As both of these inequalities hold for all j , clearly

µ(I n−kj ) ≤ 2−n min{D(n)
n−k+1(I n−k+1

2j ) +D(n)
n−k+1(I n−k+1

2j+1 ),D−n−k(I n−kj−1 ) + 2k ,D+
n−k(I n−kj+1 ) + 2k}.

Therefore, µ(I n−kj ) ≤ 2−nD(n)
n−k(I n−kj ) which implies that µ([0, 1]) ≤ 2−nD(n)

0 ([0, 1]) = Cn(K )
n→∞−−−→ 0.

Consequently, since K ⊂ [0, 1] we have µ(K ) = 0 and, as a result, µ ≡ 0.

Conjecture 3.5. A compact set K is the support of a nontrivial Zygmund measure if and only if

lim
n→∞

Cn(K ) > 0.

By Theorem 3.4, it suffices to prove that if the limit of Cn(K ) as n tends to infinity is positive,
then there exists a nontrivial Zygmund measure with support in K . In order to do so, we will define a
succession of Zygmund measures µn with mass equal to Cn(K ). As lim

n→∞
‖µn‖ = limn→∞ Cn(K ) > 0, the

limit µ = lim
n→∞

µn will be well-defined. Choosing appropriately the support of µn, µ will have support in K .

Furthermore, if µn are uniformly bounded, then µ will be a Zygmund measure.

Given an integer n we denote D(n)
0 := D(n)

0 ([0, 1]). By construction, D(n)
0 ≤

2n−1∑
j=0
D(n)

n (I nj ) where

I nj ∈ Dn. If both expressions are equal, then considering

dµn =
2n−1∑
j=0

D(n)
n (I nj )χI nj

dx ,

we have that µn is a Zygmund measure. Let us assume, that D(n)
0 <

∑2n−1
j=0 D

(n)
n (I nj ). We want to find a

Zygmund measure µn with mass 2−nD(n)
0 , constant over dyadic intervals I nj and such that µn(I nj ) = 0 if I nj

is disjoint from K .

Therefore we aim to determine some numbers d0, ... , d2n−1 ≥ 0 such that
2n−1∑
j=0

dj = D(n)
0 , that

dµn =
2n−1∑
j=0

djχI nj
dx (3)

is a Zygmund measure and that dj = 0 if I nj ∩ K = ∅. Finding a technique to determine this numbers
would end the proof, since the limit of µn would be a positive Zygmund measure with support in K .
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Therefore, we will try to distribute D(n)
0 between d0, ... , d2n−1 ≥ 0 in such a way that the aforementioned

conditions are met. Clearly, in order for µn as defined in (3) to be a Zygmund measure with ‖µ‖∗ ≤ 1,

the sequence d0d1 ... d2n−1 must be Z-1. By construction, the sequence D(n)
n (I n0 ) ...D(n)

n (I n2n−1) is the
maximal Z-1 sequence such that the j-th number is zero if I nj ∩ K = ∅. As a result, we have dj ≤
D(n)

n (I nj ) for all j . Let us denote d1
j = d2j + d2j+1. Then, in order for (3) to be a Zygmund measure,

the sequence d1
0 ... d1

2n−1−1 must be Z-2 and less than D(n)
n−1(I n−1

0 ) ...D(n)
n−1(I n−1

2n−1−1
). Denoting, inductively,

dk
j = dk−1

2j + dk−1
2j+1 for 1 ≤ k ≤ n we conclude that the sequences dk

0 ... dk
2n−k−1

must be Z-2k and less

than D(n)
n−k(I n−k0 ) ...D(n)

n−k(I n−k
2n−k−1

). Note that dn
0 = D(n)

0 .

We shall say that d0, ... , d2n−1 constitute a distribution of D(n)
0 if they meet the following conditions:

• dj ≥ 0 for all j ,

•
2n−1∑
j=0

dj = D(n)
0 ,

• dk
0 ... dk

2n−k−1
must be a Z-2k sequence for all k = 0, ... , n,

• dk
j ≤ D

(n)
n−k(I n−kj ) for all k = 0, ... , n and for all j = 0, ... , 2n−k − 1,

where d0
j = dj for all j .

If d0, ... , d2n−1 is a distribution of D(n)
0 ([0, 1]), then the measure defined in (3) meets the hypothesis

of Lemma 3.1. This implies that µn is a Zygmund measure with mass ‖µn‖ = 2−nD(n)
0 ([0, 1]) = Cn(K ).

First of all, we are going to prove that given dk
j for j = 0, ... , 2n−k −1 that meet certain conditions, we

can determine dk−1
j for j = 0, ... , 2n−k+1− 1. After that, we will state a distribution method that appears

to guarantee that the conditions are met, although we have not been able to prove this result. To that end,
let us introduce the concept of sequence of corrected sums.

Definition 3.6. Let n ∈ N and 1 ≤ k ≤ n. Given an integer Z-2k−1 sequence x1 x2 ... x2n−k+1 , we determine
its sequence of corrected sums t1 t2 ... t2n−k as:

• Firstly, let us consider the integer sequence s1 s2 ... s2n−k defined as sj = x2j−1 + x2j ∀j .

• Secondly, let e1 e2 ... e2n−k and d1 d2 ... d2n−k be two integer sequences constructed as follows:
e1 = min{s1, 2k},
d2n−k = min{s2n−k , 2k},
ej = min{sj , ej−1 + 2k} j = 2, ... , 2n−k ,

dj = min{sj , dj+1 + 2k} j = 1, ... , 2n−k − 1.

• Finally, we define the integer sequence t1 t2 ... t2n−k as tj = min{ej , dj} ∀j .

Note that, given a sequence Z-2k−1, its sequence of corrected sums will be Z-2k .
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Lemma 3.7. Given n ∈ N and 1 ≤ k ≤ n, let x1 x2 ... x2n−k+1 be an integer Z-2k−1 sequence and let
us denote by t1 t2 ... t2n−k its sequence of corrected sums. Let r1 r2 ... r2n−k be an integer Z-2k sequence
with rj ≤ tj ∀j . Then there exists y1 y2 ... y2n−k+1 an integer Z-2k−1 sequence satisfying yj ≤ xj for
j = 1, ... , 2n−k+1 and y2j−1 + y2j = rj for j = 1, ... , 2n−k , if the following conditions are met{

−x2j−3 − 2k−1 ≤ rj − rj−1 ≤ x2j + 2k−1,

rj − rj−1 ≤ 2k + x2j − y2j−4

for all j = 2, ... , 2n−k .

Notation. Let us introduce the following notation: aj = x2j − x2j−1, δj = x2j+1 − x2j , bj = sj − rj and
b̃j = xj − yj .

Proof. We will construct the sequence y1 y2 ... y2n−k+1 as yj = xj − b̃j where b̃2j−1 + b̃2j = bj . We will
take b̃j ∈ N, as a result, yj ≤ xj , yj ∈ N and y2j−1 + y2j = sj − bj = rj . Consequently, we only need
to prove that there exists b̃j with the previous definition such that y1 y2 ... y2n−k+1 satisfies yj ≥ 0 ∀j and
|yj − yj−1| ≤ 2k−1 for j = 2, ... , 2n−k+1.

Note that b̃2j−1 needs to satisfy the following conditions:

(i) b̃2j−1 ∈ I0 = [bj − x2j , x2j−1] since yj ≥ 0 implies b̃2j−1 ≤ x2j−1 and b̃2j = bj − b̃2j−1 ≤ x2j .

(ii) b̃2j−1 ∈ I1 = [0, bj ] since yj ≤ xj implies b̃2j−1 ≥ 0 and b̃2j−1 = bj − b̃2j .

(iii) b̃2j−1 ∈ I2 =
[⌈bj−aj

2

⌉
− 2k−2,

⌊bj−aj
2

⌋
+ 2k−2

]
, where b`c and d`e denote the floor and ceiling of `

respectively. This condition derives from the inequality |y2j − y2j−1| ≤ 2k−1.

(iv) b̃2j−1 ∈ I3 = [δj−1 + b̃2j−2 − 2k−1, δj−1 + b̃2j−2 + 2k−1]. This condition originates derives from the
fact that

|y2j−1 − y2j−2| = |x2j−1 − b̃2j−1 − x2j−2 + b̃2j−2| = |δj−1 − b̃2j−1 + b̃2j−2| ≤ 2k−1.

The remainder of the proof consists on checking that I0 ∩ I1 ∩ I2 ∩ I3 6= ∅ when the conditions of the
lemma are met.

Notation. Let us denote by Ij the intersection of the aforementioned four intervals of the j-th step. By
construction, the endpoints of Ij are integer, and we will denote them by Ij = [b̃2j−1,m, b̃2j−1,M ], with

b̃2j−1,m = max

{
bj − x2j , 0,

⌈
bj − aj

2

⌉
− 2k−2, δj−1 + b̃2j−2 − 2k−1

}
,

b̃2j−1,M = min

{
x2j−1, bj ,

⌊
bj − aj

2

⌋
+ 2k−2, δj−1 + b̃2j−2 + 2k−1

}
.
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Note that Lemma 3.7 implies that Ij 6= ∅. As a result, b̃2j−1,m ≤ b̃2j−1,M if the conditions are met.
Let b̃2j−1 ∈ Ij be an integer which minimises the distance2

d(b̃2j−1) = max{|bj − aj − 2b̃2j−1|, |y2j−2 − x2j−1 + b̃2j−1|}

subject to the restriction

δj + bj − b̃2j−1 + 2k−1 ≥ min

{
x2j+1, bj+1,

⌊
bj+1 − aj+1

2

⌋
+ 2k−2, δj + bj − b̃2j−1,w + 2k−1

}
= b̃2j+1,M

if rj+1 ≤ rj+2; or subject to the restriction

δj+bj−b̃2j−1−2k−1 ≤ max

{
bj+1 − x2j+2, 0,

⌈
bj+1 − aj+1

2

⌉
− 2k−2, δj + bj − b̃2j−1,w − 2k−1

}
= b̃2j+1,m

if rj+1 > rj+2, where

b̃2j−1,w =

{
b̃2j−1,M if rj ≤ rj+1,

b̃2j−1,m if rj > rj+1.

If j = 2n−k , the restriction to be satisfied is x2j − bj + b̃2j−1 ≤ 2k−1.

It can be seen easily that the aforementioned restrictions and Lemma 3.7 guarantee that the intersection
of the intervals will not be empty.

Given two sequences rj and xj that satisfy the hypothesis of Lemma 3.7, we apply the aforemention

method to obtain an integer sequence, denoted by b̃
(e)
j . Then we build a sequence symbolised by y (e), as

y
(e)
j = xj − b̃

(e)
j .

Let r ′j = r2n−k ... r2r1 and x ′j = x2n−k+1 ... x2x1, be the inverted sequences rj and xj respectively. Clearly
both sequences meet the conditions of Lemma 3.7. Applying the previously mentioned method, we obtain

another integer sequence, b̃
(d)
j . Then, we build the sequence y (d), as y

(d)
j = xj − b̃

(d)

2n−k+1−j .

Note that y (e) and y (d) might not be Z-2k−1 sequences, however, the following linear combination will
be. We define yj as


y2j−1 =

y
(e)
2j−1 + y

(d)
2j−1

2

y2j =
y

(e)
2j + y

(d)
2j

2

if (y
(e)
2j−1 + y

(d)
2j−1) ≡ 0 (mod 2),


y2j−1 =

y
(e)
2j−1 + y

(d)
2j−1 + 1

2

y2j =
y

(e)
2j + y

(d)
2j − 1

2

if (y
(e)
2j−1 + y

(d)
2j−1) ≡ 1 (mod 2) and ∆1 < ∆2,


y2j−1 =

y
(e)
2j−1 + y

(d)
2j−1 − 1

2

y2j =
y

(e)
2j + y

(d)
2j + 1

2

if (y
(e)
2j−1 + y

(d)
2j−1) ≡ 1 (mod 2) and ∆1 ≥ ∆2,

2If j = 1 we take y2j−2 = 0.
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where

∆1 =max

{∣∣∣∣∣y
(e)
2j−1 + y

(d)
2j−1 + 1

2
− y2j−2

∣∣∣∣∣ ,

∣∣∣∣∣y
(e)
2j + y

(d)
2j − 1

2
−

y
(e)
2j−1 + y

(d)
2j−1 + 1

2

∣∣∣∣∣ ,

∣∣∣∣∣y
(e)
2j+1 + y

(d)
2j+1

2
−

y
(e)
2j + y

(d)
2j − 1

2

∣∣∣∣∣
}

,

∆2 =max

{∣∣∣∣∣y
(e)
2j−1 + y

(d)
2j−1 − 1

2
− y2j−2

∣∣∣∣∣ ,

∣∣∣∣∣y
(e)
2j + y

(d)
2j + 1

2
−

y
(e)
2j−1 + y

(d)
2j−1 − 1

2

∣∣∣∣∣ ,

∣∣∣∣∣y
(e)
2j+1 + y

(d)
2j+1

2
−

y
(e)
2j + y

(d)
2j + 1

2

∣∣∣∣∣
}

.

Although this method yielded promising numerical results, we have not been able to prove that this
method of distribution guarantees that the conditions of Lemma 3.7 are always met.
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