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Resum (CAT)
La hipòtesi d’homotopia de Grothendieck afirma que l’estudi dels tipus d’homotopia

dels espais topològics és equivalent a l’estudi dels ∞-grupoides. En la pràctica, un

cop triat un model per a les categories d’ordre superior, l’equivalència és realitzada

per l’assignació del ∞-grupoide fonamental a un espai topològic. Proposem un

model accessible per al ∞-grupoide fonamental, usant categories topològiques per

a modelitzar els ∞-grupoides.

Abstract (ENG)
Grothendieck’s homotopy hypothesis asserts that the study of homotopy types of

topological spaces is equivalent to the study of ∞-groupoids. In practice, after

one has chosen a model for higher categories, the equivalence is realized by the

assignment of the fundamental ∞-groupoid to a topological space. We propose an

accessible model for the fundamental ∞-groupoid, using topological categories to

model ∞-groupoids.
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Homotopical realizations of ∞-groupoids

1. Introduction

This article results from the study of an equivalence between topological spaces and ∞-groupoids in the
framework of homotopy theory: the homotopy hypothesis. This equivalence was described in the bachelor
thesis of the author [7], and as done there, we now use it to give a more manageable model for the
fundamental ∞-groupoid of a topological space in that context. We will after study when this assignment
also gives such an equivalence.

What is algebraic topology?

The fundamental concept in this area of mathematics is that of homotopy, which is a notion of continuous
“deformation”. Concretely, two maps are homotopic if we can “deform” one into the other in a continuous
manner. From here stems the notion of (weak) homotopy equivalence between topological spaces; for
example, the plane without the origin is homotopy equivalent to the circle. The goal of algebraic topology
is to classify the homotopy types of topological spaces, where we say that two spaces are of the same
homotopy type if they are homotopy equivalent. To do this, invariants under homotopy equivalence are
studied, such as the fundamental group. The fundamental group is a very useful invariant to classify
homotopy types, but is far from allowing a complete classification.

Models for the homotopy types

A more natural way of packaging the information of the fundamental group is to consider the fundamental
groupoid, since we do not need to make any choice of basepoint. The fundamental groupoid is a category
whose objects are the points of the topological space and whose morphisms are homotopy classes of paths.

It is not surprising that this object does not permit us to model the homotopy types completely, because
we discard a lot of information when considering the paths up to homotopy. Therefore we will consider paths
as morphisms and keep the information about the homotopies separately. We will consider homotopies as
2-morphisms, that is morphisms between morphisms. In the same way, we will consider homotopies between
homotopies as 3-morphisms, etc.

The object obtained when taking into account all the higher homotopies is the so-called fundamental
∞-groupoid. This is a genuine idea of ∞-groupoid, with which Grothendieck suggested that there should
exist a good model for the notion of ∞-groupoid for which the study of the homotopy types of topological
spaces is equivalent to that of ∞-groupoids. This is what is generally known as the homotopy hypothesis,
and it is seen as a proof for the suitability of a model of∞-groupoids. The ideas of Grothendieck are found
in his manuscript “À la poursuite des champs” [1], where the mathematician started a search for such a
model.

Results

Once equipped with some ideas in this introduction we can better make sense of the results involved in
this article. We will model ∞-groupoids by certain topological categories. The way in which we proved
in [7] the mentioned equivalence is by giving an equivalence of homotopy categories, a setting in which
homotopy equivalences, or more generally weak equivalences, become isomorphisms. The result in [7] was:
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Theorem A. The homotopy category of topological spaces is equivalent to the homotopy category of
∞-groupoids, in the sense of Definition 3.3. This equivalence is realized by a composition of func-
tors |C(Sing(−))| and its inverse |N(Sing(−))|, introduced in Section 5.

This is based on the theory of model categories and the classical homotopy-theoretic equivalence of
topological spaces with simplicial sets in [8]; Theorem 2.2.5.1 in [5] – also due to Joyal; and [4]. We will use
this to proof our main result, which says that the model that we propose for the fundamental ∞-groupoid
has the homotopy type it should have, according to Theorem A:

Theorem B. The ∞-groupoid Π(X ) constructed in Construction 4.1 is weakly equivalent to |C(Sing(X ))|
for every topological space X .

Finally, we describe a situation in which the functor Π from the category of topological spaces to the
category of ∞-groupoids gives an equivalence of homotopy categories. We obtained the following, based
on the classical equivalence between connected pointed topological spaces and group-like E1-spaces – see
Section 6 for the notation:

Theorem C. The fundamental ∞-groupoid functor Π and the classifying space functor B induce an
equivalence of categories Ho(Top≥0

∗ ) ' Ho(∞-Grpd≥0
∗ ).

2. Categories with weak equivalences

We start with a first hint about the existence of homotopy theory in more general contexts than topological
spaces. A category with weak equivalences is a category C equipped with a class of morphisms W of C which
contains all isomorphisms of C, and satisfy the two-out-of-three property: for f and g any two composable
morphisms in C, if two of {f , g , g ◦ f } are in W , then so is the third.

We will define the homotopy category of C by a universal property which can more generally described as
follows. Let C be an arbitrary category and let S be a subclass of the class of maps of C. By the localization
of C with respect to S we mean a category S−1C together with a functor γ : C −→ S−1C having the
following universal property. For every s ∈ S , γ(s) is an isomorphism; given any functor F : C −→ D
with F (s) an isomorphism for all s ∈ S , there is a unique functor θ : S−1C −→ D such that θ ◦ γ = F .

Definition 2.1. Let (C, W ) be a category with weak equivalences. Then the homotopy category of C is
the localization of C with respect to the class W of weak equivalences and is denoted by γ : C −→ Ho(C).

If it exists, the homotopy category is the category obtained from C by formally inverting all the weak
equivalences. Proving existence can entail set-theoretical difficulties. To guarantee the existence one usually
relies on extra structure, such as a model category structure. This is our case.

For example, the category of compactly generated topological spaces, denoted by Top, has a model
structure [3, §2.4]. The weak equivalences are the weak homotopy equivalences: those maps which induce
an isomorphism on each homotopy group and a bijection between path-components.
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3. ∞-groupoids as topological categories

We now enter the context in which we will define ∞-groupoids: enriched categories – see [5, A.1.3, A.1.4]
for details. The cases that interest us are categories enriched over topological spaces and over simplicial
sets. These are “categories” in which there is a notion of morphisms of every order.

Definition 3.1. A topological category is a category enriched over Top, the category of compactly gener-
ated topological spaces.

In a topological category C, for each pair of objects x and y we have a topological space MapC(x , y);
we think of its points as 1-morphisms, and of a path in it as a 2-morphism. In general, for n > 1, an
n-morphism in C is a homotopy between two (n − 1)-morphisms inside the space MapC(x , y).

We denote the category of topological categories and topologically enriched functors by Cattop. We
have a functor π0 : Cattop −→ Cat to ordinary categories by taking path-components of the morphism
spaces. Continuing with the ideas in the previous paragraph, π0 has the effect of taking homotopy classes
of 1-morphisms in C, and discarding all higher homotopies. For a topological category C, we call π0C its
homotopy category.

Definition 3.2. Let F : C −→ D be a functor between topological categories. We say that F is a weak
equivalence if the following conditions hold:

• For every pair of objects x , y ∈ C, the induced map

MapC(x , y) // MapD(Fx , Fy)

is a weak homotopy equivalence of topological spaces.

• Every object of D is isomorphic in π0D to Fx , for some x ∈ C.

The analogy with topological spaces is clear: the given definition is a weak version of the notion
of equivalence of categories, in the same way in which weak homotopy equivalences are with respect to
homotopy equivalences.

We now turn our attention to the most central definition in our work. Recall that a groupoid is a
category in which every morphism in invertible. The following characterizes those topological categories
in which every morphism is invertible up to higher order morphisms or, in other words, in which every
morphism has a homotopy inverse.

Definition 3.3. Let C be a topological category. We say that C is an ∞-groupoid if π0C is a groupoid.

The condition on π0C guarantees that for every 1-morphism f of C there exists a 1-morphism g , in
the opposite direction, such that g ◦ f and f ◦ g are in the same path-component as the identity in the
corresponding endomorphism spaces. In other words, every 1-morphism has a homotopy inverse. Every
morphism of order greater than 1 in a topological category is a homotopy in some topological space, and
therefore it is already invertible up to homotopy.

The category of ∞-groupoids and topologically enriched functors will be denoted by ∞-Grpd; it is a
full subcategory of Cattop. We may consider its homotopy category, with the weak equivalences being the
ones defined in Definition 3.2, because of [4].
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Recall that a topological monoid is a monoid with respect to which the binary operation is a continuous
map. A useful observation is that the structure of a topological category with one object is just the structure
of a topological monoid on the space of endomorphisms of the single object; just as for ordinary categories
and monoids.

A characteristic property of∞-groupoids, which will feature in the proofs of Theorems B and C, is that
every connected ∞-groupoid is weakly equivalent to a group-like topological monoid, i.e., a topological
monoid M such that π0M is a group. The precise statement is the following:

Lemma 3.4. Let G be a connected ∞-groupoid. Let x be an arbitrary object of G and consider the
monoid of endomorphisms EndG(x) within G considered as a topological category with one object. Then
the inclusion functor EndG(x) −→ G is a weak equivalence of topological categories.

Proof. The inclusion functor is fully faithful because it induces the identity on the single mapping space.
It is essentially surjective because π0G is a connected groupoid.

4. A model for the fundamental ∞-groupoid

The equivalence of Theorem A is realized by applying to a topological space X a certain composition
of functors – which will be introduced in Section 5 – yielding an ∞-groupoid |C(Sing X )|; Theorem A
informally says that this∞-groupoid models the homotopy type of X . But this object is not very transparent
nor manageable without familiarity with simplicial sets. In this section we propose a model Π(X ) for the
fundamental ∞-groupoid, which we believe to improve on this, being more intuitive and accessible. It will
be the goal of the next section to show that Π(X ) is weakly equivalent to |C(Sing(X ))|, thus showing that
it is a faithful model.

The construction of Π(X ) will be based on the following ideas. Let X be a topological space and x ∈ X
be a basepoint. Consider the space of loops ΩX based at x , that is the space of continuous paths from the
unit interval into X which begin and end at x , with the compact-open topology. We can consider a binary
operation on it given by concatenation of loops, which one can achieve, for example, reparametrizing the
two loops to concatenate so that we obtain a new map from the unit interval.

This way of composing loops does not make the operation associative, and thus does not equip ΩX with
a topological monoid structure. One way to accomplish this is by extending the space of parametrization for
the paths so that we don’t have to reparametrize when concatenating. This is achieved by the construction
we describe next.

Consider the topological space

ΩM(X , x) := {(f , r) ∈ XR≥0 × R≥0 | f (0) = f (r) = x , f (s) = f (r) for s ≥ r},

with the product topology, where R≥0 = [0,∞) has the Euclidean topology and XR≥0 – the space of
continuous maps from R≥0 to X – has the compact-open topology. This space is known as the space of
Moore loops. Notice that the usual loop space ΩX includes into ΩMX as the subspace of loops (f , r) with
parameter r = 1. In fact, the space of Moore loops deformation retracts onto ΩX , so they are homotopy
equivalent spaces.

We will now see how an associative composition may be defined on ΩMX by looking directly at the
model we propose for the fundamental ∞-groupoid.
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Construction 4.1. Let X be a topological space. We let Π(X ) be the following topological category:

• The objects are the points of X .

• If x and y are two objects, we let MapΠ(X )(x , y) be the space of Moore paths from x to y :

{(f , r) ∈ XR≥0 × R≥0 | f (0) = x , f (r) = y , f (s) = f (r) for s ≥ r}.

• If g is a path that begins where f ends, we define (g , s) ◦ (f , r) as (f ∗ g , r + s), where

(f ∗ g)(t) =

{
f (t) if 0 ≤ t ≤ r ,

g(t − r) if t ≥ r .

• The constant path (cx , 0) as identity.

Proposition 4.2. The topological category Π(X ) is an ∞-groupoid for every space X .

Proof. Every Moore path (f , r) has a homotopy inverse (g , r), where g goes along the same trajectory
as f in reverse.

The assignment of the fundamental ∞-groupoid to a topological space is clearly functorial, and pre-
serves weak equivalences. Thus we have a functor Π: Top −→ ∞-Grpd which induces a functor between
homotopy categories.

Example 4.3. Let X be a topological space, and x ∈ X a point. The space of endomorphisms of x within
the∞-groupoid Π(X ) is the space of Moore loops ΩM(X , x) based at x . Lemma 3.4 says that the inclusion
functor ΩM(X , x) −→ Π(X ) is a weak equivalence.

We know aim to prove that this model is accurate.

5. Realizing the fundamental ∞-groupoid

After a short technical discussion we will reach the main result of this section: Theorem B. This discussion
involves a comparison with a combinatorial version of topological spaces: simplicial sets.

The combinatorial geometry of simplicial sets arises from the simplex category : the category whose
objects are finite totally ordered sets, and whose morphisms are order-preserving functions between them.
The simplex category is denoted by ∆. In it, there are certain maps, called face and degeneracy maps,
which encode all the combinatorics.

Let C be a category. A simplicial object in C is a functor ∆op −→ C. A simplicial object in the category
of sets is called a simplicial set. A simplicial object in the category of topological spaces is called a simplicial
space. We denote the category of simplicial objects in C by sC.

Simplicial sets have a notion of geometric realization, which is a functor to the category of topological
spaces; denoted by | − |. For example, the geometric realization of a simplicial set X is obtained by gluing
standard n-simplices, one for each element of Xn, according to the data of the face and degeneracy maps.
That is, we glue the spaces Xn ×∆n along the mentioned maps.
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More precisely, and a bit more generally, let C be a category with all colimits – in the sense of category
theory, a reference for which is [6] – and suppose that we have a functor c : ∆ −→ C. Then, associated
to this given data, we define the geometric realization as the left Kan extension of c along the Yoneda
embedding ∆ −→ sSet.

This generalizes to simplicial spaces and bisimplicial sets – that is simplicial objects in simplicial sets –
giving functors to the categories of topological spaces and of simplicial sets, respectively. For example, if
X is a simplicial space, then Xn is a topological space, and we glue the product spaces Xn ×∆n along the
face and degeneracy maps. If the Xn have the discrete topology, i.e., they are just sets, then we recover
the geometric realization of simplicial sets.

Geometric realizations come with a right adjoint which we may call a nerve functor. For the geometric
realization of simplicial sets, this functor would be the singular complex functor Sing – together with
the geometric realization functor, these are the functors establishing the homotopy-theoretic equivalence
between topological spaces and simplicial sets in [8] mentioned in the introduction.

As a different example, the nerve of a category C is a simplicial set whose set of n-simplices is the set
of sequences of n composable maps. If C is a topological or a simplicial category, then this construction
clearly generalizes and gives are simplicial space or a bisimplicial set, respectively.

Consider the composition of the nerve and realization functors

Cattop
N // sTop

|−| // Top.

We call this composition the classifying space functor, and we denote it by B. The reason behind this name
is the observation that if a topological category has only one object, then it is the same as a topological
monoid; if furthermore it is groupoid, then it is a topological group. For details about this construction
see [10].

Lemma 5.1. The classifying space functor B carries weak equivalences of topological categories to weak
equivalences of topological spaces.

Proof. The nerve functor clearly carries a weak equivalence of topological categories to degree-wise weak
equivalences of simplicial spaces, i.e., to weak equivalences between the respective spaces of n-simplices,
for every natural number n. Then one notes that the degeneracy maps of the simplicial space NC are closed
cofibrations because points are closed, by the weakly Hausdorff condition in the definition of compactly
generated topological space. Thus it follows from [11, A1] that the geometric realization of NF is a weak
equivalence of topological spaces.

Now, a result relating geometric realizations and nerves in the different contexts within which our main
results fit. It will allow us to use the mentioned proof of Theorem A, which relies heavily on the theory of
simplicial sets, to prove Theorem B.

To state the following result, we introduce the simplicial analogue of topological categories. A simplicial
category is a category enriched over the category of simplicial sets. The category of simplicial categories is
denoted by Cat∆. Theorem A is partly based on a homotopy theoretic equivalence given by a geometric
realization C and nerve N pair of adjoint functors. This nerve is known as the homotopy coherent nerve,
and it is a functor N : Cat∆ −→ sSet.
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Proposition 5.2. The following diagram commutes up to weak equivalence in Top:

Top sTop
|−|oo Cattop

Noo

Sing

��

B

xx

sSet

|−|

OO

ssSet
|−|oo

|−|

OO

Cat∆
Noo

N

ee

Proof. The left square diagram commutes up to homeomorphism – a reference for this is [9, p. 94].
For the right square diagram, we have a degree-wise weak equivalence |N(Sing G)| −→ NG, for every
∞-groupoid G, which |− | carries to a weak equivalence in Top, as in Lemma 5.1. The top diagram is just
how we defined B. The bottom diagram commutes up to homotopy by [2, Cor. 2.6.3].

Proposition 5.2 says, in particular, that the diagram below at the left commutes up to weak equivalence.

Top Cattop
Boo

Sing

��

Top
Π //

Sing

��

Cattop

sSet

|−|

OO

Cat∆
Noo sSet

C // Cat∆

|−|
OO

What the next result says is that the same holds for the diagram at the right, and by Theorem A, this
proves:

Theorem B. The ∞-groupoid Π(X ) is weakly equivalent to |C(Sing(X ))| for every topological space X .

Proof. By Theorem A, it suffices to show that Π(X ) is weakly equivalent to |C(Sing X )|. We will show in
the proof of Theorem C that there is a weak equivalence BΩX ' X −→ BΠ(X ) – here we choose any
basepoint for X , as we don’t claim naturality of the equivalence. Thus, by Proposition 5.2, we have a weak
equivalence X −→ |N(Sing Π(X ))|. Applying to it the functor |C(Sing−)| we obtain that |C(Sing X )| and
Π(X ) are weakly equivalent, by the equivalence of categories of Theorem A.

This confirms to us that Π(X ) is indeed an accurate model for the fundamental ∞-groupoid.

6. An equivalence of categories

In this section we make additional assumptions on our topological spaces and∞-groupoids, and then prove
that the functors Π and B induce an equivalence between the corresponding homotopy categories. These
assumptions are what we need in order to make use of the classical equivalence between connected pointed
topological spaces and group-like E1-spaces.

Let Top∗ denote the category of pointed topological spaces, i.e., with a distinguished basepoint. Sim-
ilarly, let ∞-Grpd∗ denote the category of ∞-groupoids with a distinguished object. Any model structure
carries over to the pointed setting [3, Prop. 1.1.8]. In particular we can consider homotopy categories. Now
let Ho(Top≥0

∗ ) and Ho(∞-Grpd≥0
∗ ) denote the full subcategories of the corresponding homotopy categories

consisting of the connected objects.
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The fundamental∞-groupoid functor Π and the classifying space functor B preserve weak equivalences.
Thus they induce a pair of functors between the homotopy categories above, which is in fact an equivalence:

Theorem C. The fundamental ∞-groupoid functor Π and the classifying space functor B induce an
equivalence of categories Ho(Top≥0

∗ ) ' Ho(∞-Grpd≥0
∗ ).

Proof. Observe that the inclusion functor of the topological monoid ΩM(X , b) of Moore loops, based at
the basepoint b of a path-connected pointed topological space (X , b), into Π(X , b) is a weak equivalence.
Since B preserves weak equivalences by Lemma 5.1, we have a natural weak equivalence BΩM(X , b) −→
BΠ(X , b) induced by the inclusion.

The homotopy equivalence ΩM(X , b) ' Ω(X , b) reduces the proof to the classical equivalence between
connected pointed topological spaces and group-like E1-spaces – a reference for this is [11, Prop. 1.4]. On
the one hand it gives a natural weak equivalence (X , b) ' BΩM(X , b) −→ BΠ(X , b), by the above. On
the other hand, any connected pointed ∞-groupoid (G, b) is weakly equivalent to the topological monoid
of endomorphisms M at its basepoint – a weak equivalence is given by the inclusion. The property of G
being an ∞-groupoid then says that π0M is a group. Then the cited result says that M ' ΩBM. As
above, we then have natural weak equivalences

(G, b) M' ΩMB(G, b)oo // ΠB(G, b)

induced by the inclusions. Finally, notice that these weak equivalences give natural isomorpisms in the
correspondent homotopy categories.
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