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Resum (CAT)
En aquest treball estudiarem l’esquema de parells de matrius n×n amb commutador

nul, pel que es conjectura que és redüıt, Cohen–Macaulay i normal. Demostrarem

que és regular en codimensió 3 però no en codimensió 4. També aportem resultats

similars per a altres esquemes relacionats amb el nostre esquema original. En

una segona part del treball estudiem les singularitats de l’esquema de parelles de

matrius que commuten a partir de l’estudi dels corresponents esquemes de jets i

altres invariants de singularitats com el log-canonical threshold.

Abstract (ENG)
In this work we will study the scheme of n×n matrices with vanishing commutator,

which is conjectured to be reduced, Cohen–Macaulay and normal. We will prove

that it is regular in codimension 3 but not in codimension 4. We will also bring

similar results for other schemes related to our original one. In a second part of

the paper, we study the singularities of the scheme of pairs of commuting matrices

from the study of the corresponding jet schemes and other singularity invariants

such as the log-canonical threshold.
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Scheme of commuting matrices

1. Introduction

The aim of this work is to study the scheme of pairs of n× n matrices over an algebraically closed field K
with vanishing commutator.

Definition 1.1. Let K be an algebraically closed field. For any integer n ≥ 1, consider the scheme associated
to the following set with the natural scheme structure,

Xn = {(A, B) ∈ Mat(n, K )×2 | [A, B] = 0},

where [A, B] = AB−BA, and we consider Mat(n, K )×2 as an affine 2n2-dimensional space, where A and B
are generic matrices. Throughout the text, we refer to this scheme as the commuting scheme1 which we will
also denote as Xn. Its reduced associated scheme is usually referred to as the commuting variety (see [7],
[10], [16]) or the variety of commuting matrices.

Equivalently, Xn = Spec Rn/In where Rn = K [{ai ,j , bi ,j}1≤i ,j≤n], for the matrices A = (ai ,j)1≤i ,j≤n,
B = (bi ,j)1≤i ,j≤n, and the ideal In = (fi ,j)1≤i ,j≤n is generated by

fi ,j =



n∑
k=1
k 6=i

(ai ,kbk,i − ak,ibi ,k) if i = j ,

n∑
k=1

k 6∈{i ,j}

(ai ,kbk,j − ak,jbi ,k) + ai ,j(bj ,j − bi ,i )− bi ,j(aj ,j − ai ,i ) if i 6= j .

Remark. {fi ,j}i 6=j ∪ {fi ,i}i 6=k is a generating set of In for any k and has a minimal number of generators.

An important property of Xn, first proven by Motzkin and Taussky [8] (as well as a bit later by
Gerstenhaber [2]), is the following theorem:

Theorem 1.2. Xn is irreducible and of dimension n2 + n for all n ≥ 1.

Moreover, there is a long standing conjecture atributed to M. Artin and M. Hochster2 (cf. [6], [11],
[7], [1], [12], [13]) on the properties of Xn:

Conjecture 1.3. Xn is reduced, Cohen–Macaulay and normal for all n ≥ 1.

This conjecture is actually a specific case, for g = gln, of the following one:

Conjecture 1.4. Let g be a reductive Lie algebra. Then, the associated scheme to

C(g) = {(a, b) ∈ g | [a, b] = 0}

is reduced, irreducible, Cohen–Macaulay and normal.

1We use this nomenclature as a parallelism with the use of commuting variety for the reduced associated scheme.
2It is cited as being posed by M. Artin and M. Hochster in 1982 ([6], [11], [7]), but none of the references cites those two

authors directly and we have not been able to find a direct source that supports it.
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Even though we know of the existence of this wider conjecture, we will only focus on the specific case
of Xn.

It is interesting to remember that the properties over the scheme can be checked over the associated
ring and, for that, we can use Serre’s conditions:

Definition 1.5. Given a Noetherian commutative ring A and an integer k ≥ 0, A is said to fulfil Serre’s
condition if

(i) Rk if Ap is a regular local ring for any prime ideal p ⊂ A such that height(p) ≤ k .

(ii) Sk if depth Ap ≥ inf{k, height(p)} for any prime p.

Theorem 1.6 (Serre’s criteria). Given a Noetherian commutative ring A, then

(i) A is reduced iff A satisfies R0 and S1;

(ii) A is normal iff A satisfies R1 and S2;

(iii) A is Cohen–Macaulay iff A satisfies Sk for all k ≥ 0;

(iv) A is regular iff A satisfies Rk for all k ≥ 0.

Other questions that can be asked are related to the singularities of these schemes. In this sense, it is
thought to have rational singularities (in characteristic 0)3, though maybe the conjecture could be about
whether they have log-canonical or log-terminal singularities, and the equivalents in characteristic p > 0,
F-rational, F-pure or strongly F-regular. These properties, in characteristic 0, can be studied through the
associated jet schemes, so we will take a look at them in the last section.

On another matter, those are not easy problems, so one ends up questioning oneself about similar
schemes. In our case, we studied, among others, the pairs of matrices whose commutator’s diagonal
vanishes, that is, the scheme associated to:

Xdiag = {(A, B) ∈ Mat(K )×2 | diag([A, B]) = 0},

where diag(M) applied to a matrix M is the projection onto the diagonal elements, (i.e., M =(mi ,j)1≤i ,j≤n 7→
diag(M) = (mi ,i )1≤i≤n).

2. Scheme of commuting matrices

In this section we present the results that we obtained on the commuting scheme. First of all, we point
out that Conjecture 1.3 is known to be true for small n:

Proposition 2.1 (see [4], [5]). Xn is reduced, irreducible and Cohen–Macaulay but not Gorenstein for n ≤ 4.

The proof of this result was obtained using the computational algebra system Macaulay2 ([3]). In that
matter, we have redone the computations with a small improvement that might be helpful in attempting
the proof for n = 5.

3The statement of rational singularities is not a published conjecture or open problem, but it would fit in the behaviour of
a more general family of schemes that are closely related to it, studied in [1].
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Proposition 2.2. OXn := Rn/In is Cohen–Macaulay (respectively reduced) iff, for any 1 ≤ i , j ≤ n, the
quotient OXn/(ai ,i , bj ,j) is Cohen–Macaulay (respectively reduced). Where (ai ,i , bj ,j) is the ideal (sheaf)
generated by the (i , i)-th entry of the matrix A and the (j , j)-th entry of the matrix B.

Furthermore, we have proven the following result:

Theorem 2.3. Xn is regular in codimension 3 but not 4 for all n ≥ 1. That is, it satisfies Serre’s condi-
tions R0, R1, R2 and R3 but not Rk for any k ≥ 4.

This result has the following implications:

Proposition 2.4. The singular locus of X red
n , the associated reduced scheme of Xn, has codimension at

least 4. If Xn is reduced, then its singular locus has codimension 4.

Proposition 2.5. If Xn has any embedded component, it must have at most dimension n2 + n − 4.

In particular, Theorem 2.3 implies, through Serre’s criteria (Theorem 1.6), the following proposition:

Proposition 2.6. If Xn is Cohen–Macaulay, then it is reduced and normal.

The implication of being reduced was known previously (cf. [4]), but the argumentation was different
(see [15, Prob. 2.7.1]). The implication of being normal was also known as an implication of it being
reduced and the following theorem:

Theorem 2.7 ([12]). Given a connected non-commutative reductive lie algebra g over an algebraically
closed field K of characteristic 0, let Cred(g) = {(a, b) ∈ g | [a, b] = 0} be the reduced scheme of pairs
of commuting elements. Then codimg×g(Cred(g))sing≥ 2, where (Cred(g))sing stands for the singular locus
of Cred(g).

Even though Proposition 2.6 can be deduced from results that were already known, its implications
to Xn for n ≤ 4 do not seem to be recorded in the literature. In any case, we have:

Proposition 2.8. Xn is reduced, irreducible, Cohen–Macaulay and normal, but not Gorenstein, for n ≤ 4.

The proof of Theorem 2.3 is too long to be included in its full extension, so we will just give the
main ideas.

Sketch of Proof of Theorem 2.3. For ease of reading we have divided the proof in three parts. Throughout
we will use the Jacobian smoothness criterion.

1. R0 and R1 properties.

Let us consider B in Jordan canonical form. If we name Jk the nilpotent Jordan block of size k,
then there exist λ1, ... ,λr ∈ K pairwise different elements and a1, ... , ar > 0 integers satisfying
a1 + · · ·+ ar = n, such that B is a block diagonal matrix of the form B = diag(λ1Ia1 + Ja1 , ... ,λr Iar +
Jar ) = (bi ,j)1≤i ,j≤n.

In this case:

c r ,s
i ,j :=

∂fr ,s
∂ai ,j

=


1 if i = r , s = j + 1 ≤ n and bj ,j = bj+1,j+1,

−1 if j = s, r = i − 1 ≥ 0 and bi−1,i−1 = bi ,i ,

bj ,j − bi ,i if (i , j) = (r , s) and bj ,j 6= bi ,i ,

0 otherwise.
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First, we will prove that det(c r ,s
i ,j )br ,r 6=bs,s

bi ,i 6=bj ,j

6∈ In, where the columns of the matrix are indexed by

the (i , j) and the rows by (r , s), both with the same ordering. We observe that the product of the
diagonal elements is

∏
{(i ,j)|bi ,i 6=bj ,j}

(bj ,j − bi ,i ) 6∈ In. We will prove that all the other products in the

determinant vanish.

Let us pick the column (i , j) and assume that we have to pick a nonzero element outside the diagonal.
If j + 1 ≤ n and bj ,j = bj+1,j+1, then bi ,i 6= bj+1,j+1, so for the (i , j) column, we can get the entry
of the (i , j + 1) row which has a value of 1. In this case, for the (i , j + 1) column we cannot get the
diagonal element. If i − 1 ≥ 0 and bi−1,i−1 = bi ,i , then bi−1,i−1 6= bj ,j and for the (i , j) column we
can get the entry of the (i − 1, j) row that has a value of −1. In this case, for the (i − 1, j) column
we cannot get the diagonal element. Otherwise, the only nonzero element is the diagonal one.

A non-vanishing product would be equivalent to this process having a cycle, but either the i decreases
or the j increases, so we can never have a cycle, and all products, apart from the diagonal one, vanish,
as we wanted to show.

Now, we will reason by induction. Given (k, l) such that bk,k = bl ,l , l + 1 ≤ n and bl ,l = bl+1,l+1,
assume that all the columns with indexes in

S = {(i , j) | bi ,i 6= bj ,j} ∪ {(i , j) | bi ,i = bj ,j , j + 1 ≤ n, bj ,j = bj+1,j+1 and (i , j) < (k , l)},

where the ordering is the lexicographic order, are linearly independent. Then, ck,l+1
k,l = 1 and for

all (i , j) ∈ S, ck,l+1
i ,j = 0, which proves that the columns with indexes in S ∪ {(k, l)} are linearly

independent. In this way, we have proven that the columns with indexes in

I = {(i , j) | bi ,i 6= bj ,j} ∪ {(i , j) | bi ,i = bj ,j , j + 1 ≤ n, bj ,j = bj+1,j+1}

are linearly independent.

Since the cardinality of I is n2 − n, we get that this closed point is reduced.

Through the action of GLn(K ) we get that the open set that includes all closed points (A, B) where
B is non-derogatory is regular.

Since the complementary of the set where A and B are non-derogatory can be checked to have
codimension 2, this implies R0 and R1 for Xn.

2. R2 and R3 properties.

First of all, we notice:
X red
n = Y ∪

⋃
Y r ,s
(i1,1,...,i1,t1 ,i2,1,...,i2,t2 ,...,ir ,tr )

(j1,1,...,j1,t′
1
,j2,1,...,j2,t′

2
,...,jr ,t′r

)

,

where Y = {(A, B) ∈ X red
n | A and B are non-derogatory} and

Y r ,s
(i1,1,...,i1,t1 ,i2,1,...,i2,t2 ,...,ir ,tr )

(j1,1,...,j1,t′
1
,j2,1,...,j2,t′

2
,...,jr ,t′r

)

is the set of pairs of commuting matrices (A, B) such that both are derogatory, A has r dis-
tinct generalised eigenvalues with Jordan decomposition in blocks of sizes (i1,1, ... , i1,t1 , i2,1, ... ,
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i2,t2 , ... , ir ,tr ), and B has s different generalised eigenvalues with Jordan decomposition in blocks
of sizes (j1,1, ... , j1,t′1 , j2,1, ... , j2,t′2 , ... , jr ,t′r ).

If r ≤ n − 3 or s ≤ n − 3, then

dim
(

Y r ,s
(i1,1,...,i1,t1 ,i2,1,...,i2,t2 ,...,ir ,tr )

(j1,1,...,j1,t1 ,j2,1,...,j2,t2 ,...,jr ,tr )

)
≤ n − 4,

for any (i1,1, ... , i1,t1 , i2,1, ... , i2,t2 , ... , ir ,tr ) and any (j1,1, ... , j1,t′1 , j2,1, ... , j2,t′2 , ... , jr ,t′r ), so we can ig-
nore those sets.

Then, to prove the result, it is enough to check, for each one of the sets corresponding to n − 2 ≤
r , s ≤ n − 1, either that it has, at most, dimension n − 4, or that it is composed of regular points.
Checking for regularity is done by computing the rank of the Jacobian matrix.

3. R4 property failure.

Take the closed points of the form (A, B) where A and B are both diagonalisable and they both
have n − 1 distinct eigenvalues, such that, when simultaneously diagonalised, they have the
form gAg−1 = diag(λ2,λ2,λ3,λ4, ... ,λn), gBg−1 = diag(µ2,µ2,µ3,µ4, ... ,µn), for certain g ∈
GLn(K ) and certain λi ,µj ∈ K . It is immediate to check that the Jacobian matrix has rank at
most n2 − n − 2, so these are all non-regular points. On the other hand, the codimension is 4.

2.1 Related schemes

As we stated in the introduction, we have also worked with some similar schemes, which has lead to the
solution of a small open problem posed by Hsu-Wen Young in his PhD dissertation [16]:

Theorem 2.9. Given a field K, the scheme associated to X = {(A, B) ∈ Mat(n, K )×2 | diag([A, B]) = 0},
where diag(M) applied to a matrix M is the projection onto the diagonal elements (i.e., M =(mi ,j)1≤i ,j≤n 7→
diag(M) = (mi ,i )1≤i≤n), is a reduced irreducible normal complete intersection scheme over K .

Hsu-Wen Young proved it to be a reduced complete intersection for general n and checked it to be
irreducible for n ≤ 3. His motivation was mainly as a counterpart to the diagonal commutator scheme,
which is the scheme:

Dn = {(A, B) ∈ Mat(n, F )×2 | [A, B] = diag([A, B])},

that is, the pairs of matrices whose commutator is diagonal.

The proof of Theorem 2.9 follows from an easy induction, the Jacobian smoothness criterion and the
use of the following lemmas:

Lemma 2.10. If R is a ring, and a ∈ R is not a zero-divisor, then R is a domain (respectively reduced) if
and only if Ra is a domain (respectively reduced).

Remark. This implies that if we have an element a ∈ R and an ideal such that (I : (a)) = I , I is prime
(resp. radical) iff it is prime (resp. radical) in Ra (thanks to the localisation at a multiplicative set S being
an exact functor from R-modules to S−1R-modules).

Lemma 2.11. Given a ring R, it is a domain (respectively reduced) iff the polynomial ring R[X ] is a
domain (respectively reduced).
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3. Jet schemes

In this section we will study the jet schemes over Xn, which are known to be closely related to its singularities
and which will allow us to get some results on the log-canonical threshold, another singularity invariant.

Definition 3.1. The m-th jet scheme associated to a scheme X over an algebraically closed field K is the
set X (m)(K ) = HomK (Spec(K [t]/tm+1), X ) with a natural scheme structure.

It is a well known result that the jet schemes over an affine scheme are again affine. Furthermore, there
is the following result:

Theorem 3.2. Given a field K and an affine scheme X = Spec(K [x1, ... , xn]/I ) over K , where I =
(f1, ... , fr ) ⊂ K [x1, ... , xn] is an ideal, we have that the defining equations for the m-th jet scheme over the
polynomial ring K [{x1,k , ... , xn,k}0≤k≤m] are

f1(x̃1(t), ... , x̃n(t)) ∼= 0 mod tm+1,
...

fr (x̃1(t), ... , x̃n(t)) ∼= 0 mod tm+1,

where x̃i (t) = xi ,0 + xi ,1t + · · ·+ xi ,mtm.

Applied to our scheme, we get:

Proposition 3.3. Over the ring K
[
{ai ,j ,k , bi ,j ,k}0≤k≤m

1≤i ,j≤n

]
, we define the matrices Ak = (ai ,j ,k)1≤i ,j≤n,

Bk = (bi ,j ,k)1≤i ,j≤n. In this situation, the elements generating the ideal that defines the m-th jet scheme

over Xn, which we name X
(m)
n , are the entries of the following matrices:

[A0, B0]

[A0, B1] + [A1, B0]

[A0, B2] + [A1, B1] + [A2, B0]

...

[A0, Bm] + [A1, Bm−1] + · · ·+ [Am−1, B1] + [Am, B0].

Remark. It is worth noticing that the group GLn(K ) acts on the scheme by simultaneous conjugation on
all the matrices X0, ... , Xm, Y0, ... , Ym.

The main results known about the jet schemes of Xn are:

Theorem 3.4 ([14]). For n ≤ 3 and for all m ≥ 0, the m-th jet scheme over Xn is irreducible and of
dimension (n2 + n)(m + 1).

Theorem 3.5 ([14]). For all m > 0 exists an integer N(m) such that for all n ≥ N(m), the m-th jet
scheme over Xn is reducible.

29Reports@SCM 5 (2020), 23–32; DOI:10.2436/20.2002.02.20.
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Even though it is not mentioned in that paper, the following proposition can be deduced from the proof
of Theorem 3.5:

Proposition 3.6. For all m > 0 there exists an integer N(m) such that for all n ≥ N(m), the m-th jet
scheme over Xn is not equidimensional and of dimension strictly greater than (n2 + n)(m + 1).

Now, it is worth noticing the following result by Mustată:

Theorem 3.7 ([9]). If X is a smooth variety over C and Y ⊂ X is a closed sub-scheme, then the
log-canonical threshold of the pair (X , Y ) is given by

lct(X , Y ) = dim X − sup
m≥0

dim Y (m)

m + 1
,

where Y (m) represents the m-th jet scheme over Y .

Joining these all, we obtain the following:

Proposition 3.8. For n ≤ 3, lct(Mat(n,C)×2, Xn) = n2 − n = codim Xn.

Proposition 3.9. For n ≥ 30, lct(Mat(n,C)×2, Xn) < n2 − n = codim Xn.

These results show the differences in the behaviour of the singularities of Xn depending on n.

The main results of Sethuraman and Šivic come from the existence of an irreducible open set of X
(m)
N

having dimension (n2+n)(m+1), which we denote U
(m)
n , formed by the set of closed points (A(t), B(t)) =

(A0 + A1t + · · ·+ Amtm, B0 + B1t + · · ·+ Bmtm) where A0 is non-derogatory, and the following lemmata:

Lemma 3.10. Given a positive integer N, assume that X
(m)
n is irreducible for all n < N. Then, for any

point (A, B) = (A(t), B(t)) ∈ X
(m)
N such that A0 or B0 have two distinct eigenvalues, we have that

(A, B) ∈ U
(m)
N , where U

(m)
N denotes the closure of U

(m)
N .

And, if we define the corresponding open set where B0 is non-derogatory as U
′(m)
n :

Lemma 3.11. Let f be an automorphism of X
(m)
n such that f (U

(m)
n ) = U

(m)
n or f (U

′(m)
n ) = U

′(m)
n or

f (U
(m)
n ∩ U

′(m)
n ) = U

(m)
n ∩ U

′(m)
n . Then, (A, B) ∈ U

(m)
n iff f (A, B) ∈ U

(m)
n .

Our method consists in proving that the closed subvariety where A0 is in a specific nilpotent Jordan
canonical form is irreducible. In this case, the set

SA0 = {(A′(t), B ′(t)) ∈ X
(m)
n | ∃g ∈ GLn(F ), λ ∈ F such that A′0 = gA0g−1 + λI}

is irreducible. Finally, we have that there is a non-derogatory matrix B0 commuting with A0. Taking

A(t) = A0 + 0t + · · ·+ 0tm and B(t) = B0 + 0t + · · ·+ 0tm, we have that this pair belongs to U
(m)
n and,

therefore, SA0 ∩ U
(m)
n 6= ∅. Which, by the irreducibility of SA0 , implies SA0 ⊂ U

(m)
n .

We also used similar methods to set bounds on the dimension of the jet schemes.
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Let us define

Y(r1,...,rs) = {(A(t), B(t)) ∈ X
(1)
n | A0 = J(r1,...,rs)},

Ỹ(r1,...,rs) = {(A(t), B(t)) ∈ X
(1)
n | ∃g ∈ GLn(F ), ∃λ ∈ K s.t. gA0g−1 + λI = J(r1,...,rs)},

where J(r1,...,rs) refers to the nilpotent matrix in Jordan canonical form with s blocks of sizes r1, ... , rs .

The results that we obtained using the described method and basic linear algebra are the following:

Proposition 3.12. The reduced scheme associated to

(i) Y(1,...,1) is irreducible for all n ≥ 1;

(ii) Y(n/r ,...,n/r), for r |n, is irreducible if and only if X
(r−1)
n/r is irreducible;

(iii) Y(n−r ,1, r...,1), for r ≥ 0 is irreducible for all n ≥ r + 2 if and only if it is for some n ≥ r + 2;

(iv) Y(n−2,1,1) is irreducible for all n ≥ 4;

(v) Y(n−r ,1, r...,1), for r ≥ 0, has the same codimension for all n ≥ r + 2;

(vi) Ỹ(n−r ,1, r...,1), for r ≥ 0, has dimension at most 2(n2 + n);

(vii) Ỹ((n−1)/2,(n−1)/2,1), for n = 5, has dimension at most 2(n2 + n).

All these results allowed us to prove the following:

Theorem 3.13. The first jet scheme over X4 is irreducible of dimension 2(42 + 4) = (m + 1)(n2 + n).

Theorem 3.14. The first jet scheme over X5 has dimension 2(52 + 5) = (m + 1)(n2 + n).

These results on the jet schemes have implications on another open problem (see [14]) that deals
with the dimension of K [A1, ... , Am], the algebra generated by m square n × n commuting matrices over
a field K . The question is whether it is bounded by n. The answer is positive for m = 2 and negative
for m ≥ 4 (cf. [14]).

Specifically, Sethuraman and Šivic introduced a relation between the jet schemes over Xn with algebras
generated by three commuting matrices:

Proposition 3.15 ([14]). Given K an algebraically closed field and k ≥ 0 an integer, if Jk+1 is the nilpotent
Jordan block of dimension k + 1, C is a block diagonal matrix in Mat(n(k + 1), K ) consisting of n copies
of Jk+1 along the diagonal up to addition of scalars and A, B two matrices commuting with C , then if

X
(k)
n is irreducible dim K [A, B, C ] ≤ n(k + 1).

In particular, if we combine this proposition with the results that we obtained on the first jet scheme
over X4, we obtain the following new result:

Corollary 3.16. Let K be an algebraically closed field. If J2 is the nilpotent Jordan block of dimension 2,
C is a block diagonal matrix in Mat(8, K ) consisting of 4 copies of J2 along the diagonal up to addition of
scalars and A, B two matrices commuting with C , then dim K [A, B, C ] ≤ 8.
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