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Resum (CAT)
Aquest treball té com a objectiu introduir el lector a la teoria K per C∗-àlgebres

demostrant-ne dos dels seus resultats centrals coneguts: La periodicitat de Bott

i la successió exacta ćıclica de sis termes. Aquests dos resultats constitueixen

una eina essencial de cara al càlcul expĺıcit dels K -grups d’una C∗-àlgebra, i han

estat utilitzats amb èxit en l’estudi de diverses faḿılies. De cara a enunciar-los,

ens desviem lleugerament de la literatura estàndard i introdüım la notació K ′,

que permet simplificar els resultats i definicions necessàries per entendre les seves

demostracions.

Abstract (ENG)
The aim of this work is to introduce the reader to C∗-algebraic K -theory whilst

proving two of its main known results: Bott periodicity and the hexagonal exact

sequence. These constitute a determinant tool for the explicit computation of the

K -groups of a C∗-algebra, and have been used succesfully to study a variety of

families. In order to state them, we deviate slightly from the standard literature

and introduce the notation K ′, which allows us to simplify the results and definitions

needed to understand their proofs.
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K -theory for C ∗-algebras

1. Introduction

The development of C ∗-algebraic K -theory was initiated in the early 1970s, when G.A. Elliott classified
the so-called approximately finite dimensional C ∗-algebras by using their ordered K0 groups, see [2]. Since
then, C ∗-algebraic K -theory has become an important tool in the treatment of operator algebras, and has
been used succesfully to classify a considerably large family of separable and simple C ∗-algebras.

In analogy to the topological K -theory developed by Aityah–Hirzebruch, in C ∗-algebraic K -theory one
defines a family of functors Kn from the category of C ∗-algebras to that of abelian groups, thus assigning
to every C ∗-algebra A a family of groups Kn(A). The computation of these groups, usually known as the
K -groups of the algebra, provides useful information on the structure of the sets of projections and unitaries
of A.

Towards this computation, and in contrast to algebraic K -theory, there exist a number of tools that
make the treatment of the K -groups of a C ∗-algebra manageable. Amongst them, there are two that are
of particular importance: The first one, known as Bott periodicity, is the C ∗-algebraic equivalent to the
periodicity obtained in topological K -theory, and states that all K -groups of even and odd subscripts are
isomorphic to K0 and K1, respectively; see [1, Ch. 9].

The second result, which is a consequence of the first one, allows us to construct a hexagonal exact
sequence from any exact sequence of C ∗-algebras. In particular, the existence of such a sequence implies
that one can compute the K -groups of a C ∗-algebra by studying the K -groups of one of its ideals and its
corresponding quotient; see [1, § 9.3].

Therefore, the aim of this work is to introduce the reader to C ∗-algebraic K -theory whilst proving these
two results. More explicitly, for any exact sequence of C ∗-algebras

0 // I
ϕ // A

φ // B // 0, (1)

we wish to obtain the associated hexagonal exact sequence

K1(I )
K1(ϕ) // K1(A)

K1(φ) // K1(B)

δ1��
K0(B)

δ0
OO

K0(A)
K0(φ)oo K0(I ).

K0(ϕ)oo

(2)

To this end, we will assume without loss of generality (see, for example, [4, § 1.1.5]) that (1) is of the form

0 // I
i // A

π // A/I // 0, (3)

where I is an ideal of A and i ,π are the usual inclusion and quotient mappings.

The remainder of this paper has been divided into three parts, where some familiarity with C ∗-algebras
is assumed. All the C ∗-algebraic background needed for these sections can be found in many textbooks;
see, for example, [3].

In Section 2 we recall the definitions of the K -functors as well as some of their properties. We also
introduce the notation K ′n, which will allow us to shorten the definitions of this section and the proofs of
Section 3. As the aim of Section 2 is for the reader to get acquainted with the basics of K -theory, we omit
all the proofs.
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The index map, denoted by δ1, is then defined in Section 3, where we first prove that the K ′-functors are
exact and invariant under homotopy. As these functors are equivalent to the K -functors, the construction
of the index map together with this fact gives us a six-term exact sequence which is not yet cyclic.

Finally, in Section 4 we prove Bott periodicity and construct the hexagonal exact sequence by closing
the sequence obtained in Section 3. Since the proofs of some of the preliminary lemmas in this section are
rather long and arduous, we only provide a reference for them.

2. An overview of C∗-algebraic K-theory

In this first section we briefly review the concepts and results of C ∗-algebraic K -theory that will be used in
the subsequent sections. All the proofs can be found in [4, 5]. Throughout this paper, A and B will denote
C ∗-algebras and, given any two square matrices a, b over A, we will refer to the matrix diag(a, b) by a⊕ b.

2.1 The projection group K0 and the unitary group K1

We begin our overview defining the first two K -groups. As we will later prove, these are the only ones up
to isomorphism.

Proposition 2.1. Let Pn(A) be the sets of projections in Mn(A) and denote by P∞(A) their disjoint union.
Then, by writting p ∼0 q if and only if p = vv∗ and q = v∗v for some rectangular matrix v , one gets that
(P∞(A)/ ∼0,⊕) is a commutative monoid with the class of 0 as its unit.

Definition 2.2. For any unital C ∗-algebra A, the group K0(A) is defined to be the Grothendieck group of
the monoid above, where we denote the class of an element p ∈ P∞(A) by [p]0. If A does not have a unit,
we define the group K0(A) as the kernel of the map K0(π) : K0(Ã)→ K0(C), where K0(π)([p]0) = [π(p)]0
and π is the usual projection map from Ã to C applied entry-wise (here, we use Ã to denote the unitification
of A).

Remark 2.3. It can be shown that every element in K0(A) is of the form [p]0−[1n⊕0n]0 for some projection
p ∈ P∞(Ã) whose scalar part s(p) is 1n⊕ 0n. Moreover, if A is unital, it follows from its construction that
every element in K0(A) is of the form [p]0 − [q]0 for some p, q ∈ P∞(A), where we can assume that both
projections are of the same size.

As A is equipped with a norm, we can study its induced topology. In particular, we say that two
elements a and b are homotopic in a subset S ⊂ A, in symbols a ∼h b, if there exists a continuous path
in S going from a to b. For example, given two projections p, q homotopic in Pn(A), one can see that
[p]0 = [q]0. Conversely, if [p]0 = [q]0, then p ⊕ 0s ∼h q ⊕ 0t for some positive integers s and t.

We will also say that two ∗-homomorphisms ϕ0 and ϕ1 from A to B are homotopic if there is a
continuous map t 7→ ϕt from [0, 1] to the ∗-homomorphisms from A to B such that t 7→ ϕt(a) is a
homotopy for each a ∈ A. Moreover, two C ∗-algebras A and B are said to be homotopic if there exist two
∗-homomorphisms φ and ϕ such that φ ◦ ϕ ∼h idB and ϕ ◦ φ ∼h idA.

Proposition 2.4. Let A be a unital C ∗-algebra and consider the set U∞(A) = ∪nUn(A), where Un(A)
denotes the set of all unitary n × n matrices over A. Then, the equivalence relation “u ∼1 v if and only
if u ⊕ 1n ∼h v ⊕ 1m in UN(A) for some suitable integers n, m, and N” makes (U∞(A)/ ∼1,⊕) into a
commutative group with the class of 1 as its unit.
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Definition 2.5. Given a unital C ∗-algebra A, the group K1(A) is the commutative group defined above,
where we refer to the class of a unitary u ∈ U∞(A) as [u]1. If A does not have a unit, we define
K1(A) := K1(Ã).

Remark 2.6. It can be proven that every element in K1(A) is of the form [u]1 with u ∈ U+
∞(Ã), where

U+
∞(Ã) is the set of unitaries whose scalar part is of norm 1.

Example 2.7. It is easy to see that two elements p, q ∈ P∞(C) are equivalent under ∼0 if and only if
dim(Im(p)) = dim(Im(q)). Thus, it follows that K0(C) ∼= Z. Moreover, recall that a unitary u in a unital
C ∗-algebra is homotopic to 1 in U(A) if and only if its spectrum is not T; see [4, Lem. 2.1.3(ii)]. Therefore,
as all unitaries in U∞(C) have finite spectrum, they must be equivalent to 1 under ∼1. This implies that
K1(C) = 0. One can also adapt these arguments to see that K0(B(H)) = K1(B(H)) = 0 for any separable
infinite dimensional Hilbert space H.

2.2 Suspension functor and higher index K-groups

Once the K0 and K1 groups have been defined, one can make use of the suspension functor S to define
two families of groups: the higher index K -groups and the K ′-groups. Even though these two families turn
out to be the same, the introduction of the K ′-groups allows us to simplify both the definitions and proofs
regarding the properties of the higher index K -groups.

Recall that the suspension functor S is an exact covariant functor mapping a C ∗-algebra A to SA :=
{f ∈ C (T, A) | f (1) = 0}, and a ∗-homomorphism φ : A→ B to the ∗-homomorphism Sφ from SA to SB
defined as Sφ(f ) = φ ◦ f .

Definition 2.8. By using the notation S0 = id and Sn = Sn−1 ◦ S , we define the higher index K -groups
Kn(A) = K1(Sn−1A) and the K ′-groups K

′
n(A) = K0(Sn(A)).

Now let φ : A → B be a ∗-homomorphism. We denote by K
′
n(φ) : K

′
n(A) → K

′
n(B) the group homo-

morphism K
′
n(φ)([p]0− [s(p)]0) = [Snφ̃(p)]0− [Snφ̃(s(p))]0. One can check that this definition makes K

′
n

into functors. A proof of the theorem below can be found in [5, Thm. 7.2.5].

Theorem 2.9. Given any C ∗-algebra A, consider the map θA,n : Kn(A)→ K
′
n(A) defined as

θA,n([u]1) = [w(1m ⊕ 0m)w∗]0 − [1m ⊕ 0m]0 , u ∈ U+
m(S̃n−1A),

where w is a homotopy between 12m and u ⊕ u∗ in U2m(Sn−1A). Then, θA,n is an isomorphism for every
integer n ≥ 1.

Definition 2.10. Given a ∗-homomorphism φ : A → B, we define Kn(φ) : Kn(A) → Kn(B) as Kn(φ) =
θ−1B,n ◦ K

′
n(φ) ◦ θA,n. Together with this definition, the K -groups also become functors.

3. Homotopy invariance and the index map

The goal of this section is to define the map δ1 from (2) and prove that the two rows together with the
right column of (2) form an exact sequence. However, we will first show that the K

′
n functors are invariant
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under homotopy, as this is one of the main tools used in the explicit computation of the K groups of a
C ∗-algebra. Note that, by their definition and Theorem 2.9, this will imply that the functors Kn are also
invariant under homotopy.

Theorem 3.1. Given two homotopic ∗-homomorphisms ϕ0 and ϕ1 from A to B, we have that K
′
n(ϕ0) =

K
′
n(ϕ1), for every n ≥ 0.

Proof. Fix n ∈ N and let q be an element in Pk(S̃nA) for some k . Then, write q as the sum q = p+α1
S̃nA,k

with p ∈ Mk(SnA) and α ∈ Mk(C). For every t ∈ [0, 1], define the elements pt = Snϕt(p) and

qt = S̃nϕt(q), where t 7→ ϕt is the homotopy from ϕ0 to ϕ1.

As S̃nϕt is a ∗-homomorphism, it follows that qt is a projection for every t. Moreover, one gets that
qt = pt + α1

S̃nB,k
and, consequently, that t 7→ qt is continuous if and only if t 7→ pt is continuous.

Now let δp : [0, 1]× Tn → A be the map defined as δ(p)(t, (z1, ... , zn)) = pt(z1)(z2) · · · (zn), and note
that, for any two pairs (t1, ξ1), (t2, ξ2) ∈ [0, 1]× Tn, one gets

‖δp(t1, ξ1)− δp(t2, ξ2)‖ ≤ ‖ϕt1(p(ξ1))− ϕt2(p(ξ1))‖+ ‖p(ξ1)− p(ξ2)‖.

Thus, since p is continuous and t 7→ ϕt is a homotopy, we have that δp is also continuous. Furthermore,
as δp has compact support, the map is uniformly continuous.

It then follows that t 7→ pt is continuous and that t 7→ qt is a homotopy of projections. Therefore, one

gets [q0]0 = [q1]0 for any q ∈ P∞(S̃nA), which implies the equality K0(S̃nϕ0) = K0(S̃nϕ1), from which
the desired result follows.

Example 3.2. Let X be a compact, Hausdorff, and contractible topological space. Then, the K0 and K1

groups of the C ∗-algebra C (X ,C) are isomorphic to Z and 0, respectively, as C (X ,C) is homotopic to C.
Recall that X is contractible if there exists a point x0 and a continuous map c : X × [0, 1]→ X such that
c(x , 0) = x and c(x , 1) = x0 for every x ∈ X . Then, a pair of functions giving the homotopy between
C (X ,C) and C are z 7→ z1C(X ,C) and f 7→ f (x0). For more details, see [4, Ex. 3.3.6].

Proposition 3.3. For any exact sequence of the form (3), the induced sequence

Kn(I )
Kn(i) // Kn(A)

Kn(π) // Kn(A/I ) (4)

is exact for every n.

Proof. As we have previously noted, it follows from their definition and Theorem 2.9 that proving the result
for K

′
n is equivalent to proving it for Kn. Moreover, by using the functoriality and exactness of S , one can

see that the diagram

K
′
n(I ) //

��

K
′
n(A) //

��

K
′
n(A/I )

��
K0(Im(Sni)) // K0(SnA) // K0(SnA/Im(Sni))

is commutative and has isomorphisms as columns, for every n ≥ 0. Thus, we only need to prove that
ker(K0(π)) ⊂ Im(K0(i)), as we can restrict ourselves to n = 0 and the other inclusion is clear.
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Now, given an element [p]0− [s(p)]0 in ker(K0(π)), find a unitary u ∈ UN(Ã/I ) such that, for suitable
integers n, k, N, u(π̃⊕1n⊕0k) = s(p)⊕1n⊕0k . Then, by taking a unitary w homotopic to 12N in U2N(A)
such that π̃(w) = u ⊕ u∗, we can define the projection

r = w(p ⊕ 1n ⊕ 0k+N)w∗.

As π̃(r) ∈ M∞(C1A) by construction, it follows that r ∈ M∞(Ĩ ). In particular, we have that

[p]0 − [s(p)]0 = [r ]0 − [s(r)]0 ∈ Im(K0(i)),

as required.

Theorem 3.4. For any exact sequence of the form (3), there exists a group homomorphism δ1 such that
the following sequence is exact:

K1(I )
K1(i) // K1(A)

K1(π) // K1(A/I )

δ1��
K0(A/I ) K0(A)

K0(π)oo K0(I ).
K0(i)oo

(5)

Proof. Given an element [u]1 ∈ K1(A/I ) with u ∈ U+
k (Ã/I ), we define its image through the index map

δ1 as
δ1([u]1) = [w(1n ⊕ 0k)w∗]0 + [1n ⊕ 0k ]0,

where v ∈ U+
k (Ã/I ) is such that u ⊕ v ∼h 1n+k in U+

k (Ã/I ), and w is a unitary lift of u ⊕ v . It can be
proven that δ1 is indeed a well defined group homomorphism; see, for example, [5, Prop. 8.1.3].

Then, it follows from Proposition 3.3 that we only need to prove the equalities Im(δ1) = ker(K0(i)) and
ker(δ1) = Im(K1(π)). Moreover, note that the inclusions Im(δ1) ⊆ ker(K0(i)) and Im(K1(π)) ⊆ ker(δ1)
are clear.

Thus, let [u]1 ∈ ker(δ1) with u ∈ U+
m(Ã/I ) for some m, and let w be a unitary lift of u ⊕ u∗. As

δ1([u]1) = 0, we can find an integer k and a matrix v ∈ M2(k+2m)(Ĩ ) such that vv∗ = 12n − q ⊕ 1k ⊕ 0n
and v∗v = 12n − (1m ⊕ 0m)⊕ (1k ⊕ 0n), where q = w(1m ⊕ 0m)w∗ and n = k + 2m.

By using the previous two equalities together with vv∗v = v , it is easy to check that π̃(v) = 0m ⊕ X
for some X ∈ M2n−m(C1Ã). Therefore, there exists a complex (2n + m) × (2n + m) matrix U such that
π̃(qw ⊕ v) = u ⊕ U. As U ∼h 12n+m, it follows that

[u]1 = [u]1 + [U]1 = K1(π)([qw ⊕ v ]1) ∈ Im(K1(π)).

Now let x = [p]0 − [1n ⊕ 0n]0 ∈ ker(K0(i)) with p ∈ P2n(Ĩ ). Then, there exists an integer k ∈ N for
which p ⊕ 1k ⊕ 0m ∼0 (1n ⊕ 0n)⊕ 1k ⊕ 0m =: sk , with m = 3(2n + k). Moreover, we can find a complex
matrix P such that PskP∗ = 1n+k ⊕ 0n+m and, consequently, we have

q := P(p ⊕ 1k ⊕ 0m)P∗ ∼0 1n+k ⊕ 0n+m =: d .

Take w ∈ U+
∞(Ã) such that wqw∗ = d and note that π̃(w) commutes with d . It follows that π̃(w) = a⊕b

for some a ∈ U+
n+k(Ã). Finally, as w is a unitary lift of a⊕ b, we get

x = [q]0 − [d ]0 = [wdw∗]0 − [d ]0 = δ1(π̃(a)) ∈ Im(δ1),

as desired.
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4. Bott periodicity and the hexagonal exact sequence

We begin this section by noting that Mn(S̃A) can be identified with the set of continuous functions
f ∈ C (T, Mn(Ã)) such that f (1) ∈ Mn(C1Ã). In particular, we can write

Un(S̃A) = {f ∈ C (T, Un(Ã)) | f (1) ∈ Mn(C1Ã)}.

By using this identification, we can now define the Bott map. What follows is a combination of [4, Ch. 11]
and [5, Ch. 9]:

Definition 4.1. Let A be a unital C ∗-algebra and take p ∈ Pn(A). We define fp ∈ Un(S̃A) as the map
from T to A such that fp(z) = zp + (1n − p). The Bott map βA : K0(A) → K1(SA) is then defined as
βA([p]0 − [q]0) = [fpf ∗q ]1 for any element [p]0 − [q]0 in K0(A).

Remark 4.2. It can be proven that βA is a well defined homomorphism; see, e.g., [4, § 11.1].

If A is not unital, we define the Bott map of A to be the only homomorphism for which the following
diagram is commutative:

0 // K0(A) //

βA
��

K0(Ã)
//

βÃ��

K0(C)oo

βC
��

// 0

0 // K1(SA) // K1(SÃ)
//
K1(SC)oo // 0.

In particular, it follows that we only need to prove that the Bott map is an isomorphism in the unital case.
Thus, we will assume from now on that A has a unit.

We will first prove that βA is surjective. Let GL0(Mn(A)) be the set of invertible n × n matrices that
are homotopic to the identity. Then, define the following sets:

Invn0 := C (T, GL0(Mn(A))),

Polnm := {f ∈ Invn0 | f(z) =
m∑
i=0

aiz
i , ai ∈ Mn(A)},

Trignm := {f ∈ Invn0 | f(z) =
m∑

i=−m
aiz

i , ai ∈ Mn(A)}.

Remark 4.3. One can check that Un(S̃A) is a subset of Invn0 for every n, and that, if two unitaries are

homotopic in Invn0, then they are also homotopic in Un(S̃A); see [4, § 11.2].

As we have already mentioned in the introduction, we omit the proof of the next lemma.

Lemma 4.4 ([5, Lem. 9.2.3–9.2.7]). For every unital C ∗-algebra A and every integer n ∈ N, we have:

(i) for every f ∈ Invn0, there exists an integer m and an element h ∈ Trignm such that f ∼h h in Invn0;

(ii) for every integer m there exists a continuous map µnm from Polnm to Polmn+n
1 such that µnm(f ) is

homotopic to f ⊕ 1mn in Invn0, for every f ;

7Reports@SCM 5 (2020), 1–10; DOI:10.2436/20.2002.02.18.
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(iii) for any degree one polynomial f ∈ Poln1 there exists an element γ(f ) of the form fp such that
f ∼h γ(f ) in Poln1; moreover, the map f 7→ γ(f ) is continuous.

Proposition 4.5. The Bott map is surjective.

Proof. Let [f ]1 ∈ K1(SA) with f ∈ Un(S̃A). By Lemma 4.4(1), we can find an element h ∈ Trignm such

that f ∼h h in Invn0. As z−N ⊕ 1M−1 ∼h f ∗1N⊕0M−N
in UM(S̃A) for every pair N, M such that N ≤ M, we

get (hzN)z−N ⊕ 1M ∼h (hzN ⊕ 1M)f ∗pN for every N ≤ M, and where pN = 1N ⊕ 0M−N .

In particular, if N is large enough, hzN is polynomial. Thus, for any such N, Lemma 4.4(2) ensures
that we can find a degree one polynomial r such that hzN ⊕ 1t ∼h r for some t. Moreover, it follows from
Lemma 4.4(3) that there exists some element fp homotopic to r .

By now adding some extra 1’s in the diagonal, we have that f ⊕1M+nt ∼h fp⊕0M f ∗pN and, consequently,
that βA([p]0 − [pN ]0) = [f ]1.

We now prove that βA is injective. Once again, we will omit the proof of the following lemma.

Lemma 4.6 ([5, § 9.1.2 & Lem. 9.2.10]). For every unital C ∗-algebra A and every integer n ∈ N, we have:

(i) the map π : {fp | p ∈ Pn(A)} → Pn(A) sending an element fp to p is continuous;

(ii) for any homotopy f 7→ ft in Invn0, there exists a positive integer N such that f 7→ ft can be uniformly
approximated by a homotopy c 7→ ct in TrignN that is piecewise linear. In particular, if f0, f1 ∈ TrignN,
one can set c0 = f0 and c1 = f1.

Proposition 4.7. The Bott map is injective.

Proof. Let [p]0 − [q]0 ∈ K0(A) be such that βA([p]0 − [q]0) = 0 or, equivalently, such that [fpf ∗q ]1 = 0.
Then, by possibly adding some zeros diagonally, we have that fp ∼h fq. By Lemma 4.6(2), we can find
a polynomial homotopy between zN fp and zN fq for some integer N. Moreover, once again adding some
zeros and ones diagonally, and using Lemma 4.4(2,3), we obtain a homotopy t 7→ fpt such that p0 = p and
p1 = q. Finally, Lemma 4.6(1) gives a homotopy between p and q, from which we get that [p]0 = [q]0
and, therefore [p]0 − [q]0 ∈ ker(βA).

Combining Propositions 4.5 and 4.7 above, one gets the desired result:

Theorem 4.8. For any C ∗-algebra A, the Bott map βA is an isomorphism between the groups K0(A) and
K2(A). Consequently, all the K-groups Kn(A) of even subindexes are isomorphic to K0(A), and those with
odd subindexes are isomorphic to K1(A).

Other proofs of this result are indeed possible, such as the recent one in [6]. In it, Voiculescu’s almost
commuting matrices are used to define a homomorphism αA : K1(SA) → K0(A), which is then shown,
with the help of Atiyah’s rotation trick, to be the mutual inverse of βA (the author thanks the anonymous
referee for this reference).

With Bott periodicity at hand, we can now construct the hexagonal exact sequence.
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Theorem 4.9. For any exact sequence of the form (3), there exists a group homomorphism δ0 such that
the following hexagonal sequence is exact

K1(I )
K1(i) // K1(A)

K1(π) // K1(A/I )

δ1
��

K0(A/I )

δ0

OO

K0(A)
K0(π)oo K0(I ).

K0(i)oo

Proof. Given an exact sequence 0→ I → A→ A/I → 0, consider the suspended sequence

0→ SI → SA→ S(A/I )→ 0

and its corresponding index δ
′
1 from Theorem 3.4. Then, define δ0 as the composition θ−1I ,1 ◦ δ

′
1 ◦ βA/I ,

where θ−1I ,1 is the isomorphism from Theorem 2.9.

K2(A/I )

θ−1
I ,1 ◦δ

′
1��

K1(I )
K1(i) // K1(A)

K1(π) // K1(A/I )

δ1
��

K0(A/I )

βA/I

??

K0(A)
K0(π)oo K0(I )

K0(i)oo

By Theorem 3.4, we only need to prove that the sequence is exact at K1(I ) and K0(A/I ). To do this,
simply note that the following diagram is commutative

K0(A)
K0(π) //

OO

βA
��

K0(A/I )
δ0 //

OO
βA/I
��

K1(I )
K1(i) //

OO

θI
��

K1(A)
OO

θA
��

K1(SA)
K1(Sπ) // K1(S(A/I ))

δ1 // K0(SI )
K0(Si) // K0(SA),

and that all of its columns are isomorphisms. As the second row is exact by Theorem 3.4, so is the first
one.

Example 4.10. Let H be an infinite dimensional separable Hilbert space and consider the Calkin algebra
Q(H) = B(H)/K (H), where K (H) is the algebra of compact operators on H. Then, the exact sequence

0 // K (H)
i // B(H)

π // Q(H) // 0

induces, by Theorem 4.9, the hexagonal exact sequence

K1(K (H))
K1(i) // K1(B(H))

K1(π) // K1(Q(H))

δ1��
K0(Q(H))

δ0
OO

K0(B(H))
K0(π)oo K0(K (H)).

K0(i)oo

Moreover, recall from Example 2.7 that K0(B(H)) = K1(B(H)) = 0. Thus, δ0 and δ1 are isomorphisms.

By using that the K -groups are stable (see [4, Prop. 6.4.1 & Prop. 8.2.8]), one can also see that
K0(K (H)) ∼= K0(C) ∼= Z and that K1(K (H)) ∼= K1(C) = 0. Therefore, the K0 and K1 groups of the
Calkin algebra are isomorphic to 0 and Z respectively.
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