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grafs de Cayley i, en particular, pels grafs circulants.

Abstract (ENG)
We investigate the gossiping problem, in which nodes of an intercommunication

network share information initially given to each one of them according to a com-

munication protocol by rounds. We consider two types of communication protocols:

vertex-disjoint path mode, and edge-disjoint path mode. We give a general lower

bound on the complexity of gossiping algorithms in terms of the isoperimetric func-

tion of the graph. We focus on Cayley graphs and give optimal algorithms for

subclasses of Cayley graphs and, in particular, for circulant graphs.

Keywords: Gossiping, isoperimet-
ric function, Cayley graphs, circulant
graphs, cube.
MSC (2010): 05C85, 68R10.
Received: November 21, 2013.
Accepted: May 9, 2014.

Acknowledgement
This work has been developed during a

research stay in the research group Com-

bgraph at the Universitat Politècnica de
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Gossiping in circulant graphs

1. Introduction and definitions

1.1 Motivation

In this paper, we study the gossiping problem, in which we disseminate information among an intercom-
munication network. Initially, each node of the network has some private piece of information. The nodes
exchange information through the network, in consecutive rounds, where in each round they can receive
or send information, with some constraints according to the communication protocol. The information
exchange is complete when each node has learned every piece of information. A gossiping algorithm de-
cides at each round who communicates with whom. We want to find an algorithm which completes the
exchange of information in a minimal number of rounds.

We study two communication protocols, the vertex-disjoint path (VDP) mode, and the edge-disjoint
path (EDP) mode. In these modes, a node can communicate with another node if they are connected by
a path. In every round, the gossiping algorithm selects paths between pairs of nodes that communicate
with each other. In the VDP mode, the selected paths need to be vertex-disjoint, that is, they do not
have any vertex in common. Similarly, in the EDP mode, the selected paths need to be edge-disjoint, that
is, they do not have any edge in common. Moreover, a node can communicate with only one other node
during one round. We measure the complexity of a gossiping algorithm by the number of rounds it needs
to run. We call the gossip complexity of a network the minimal number of rounds needed by any gossiping
algorithm to complete the exchange of information. We choose to study VDP and EDP modes because
they are at the same time realistic, and powerful enough to achieve relatively fast gossiping. They have
been introduced in [1]. They are widely used in real life applications, and have been extensively studied,
see [2, 7, 8, 9, 13, 14]. Each of these modes of communication admits two different versions; they can
either be a full duplex or a half duplex mode. In the full duplex version, when two nodes communicate
with each other along a path, they both send and receive their information at the same time, whereas for
the half duplex version, only one node sends its information and the other receives it. Full duplex modes
are well suited for undirected graphs, which are the graphs we study in this paper. Therefore, we only deal
with the full duplex version of the VDP and EDP modes.

In order to have good gossip complexity, the intercommunication network needs to have good structural
properties. That is why we focus on Cayley graphs, and on circulant graphs, which are a subclass of Cayley
graphs. These are popular network topologies.

1.2 Synopsis

In Section 2 we give a general lower bound for the gossip complexity of any graph, in terms of the
isoperimetric function of the graph. It is a generalization of the lower bound obtained by Klasing [10].
Thanks to this lower bound, we prove that our gossiping algorithms are optimal, up to a log log(n) factor,
where n is the order of the graph.

In Section 3, we recall some notions and known results on gossiping. In particular we recall the gossip
complexity of the hypercube graph, which is one of the best graphs for the gossiping problem, that is,
its gossip complexity is less than the gossip complexity of any other graph. Knödel describes an optimal
gossiping algorithm for the hypercube in [11]. Therefore, naturally, for graphs that have a similar structure to
the hypercube, we try to use a similar gossiping algorithm. Indeed, many graphs embed into the hypercube
graphs. We define the concept of embedding in the same Section 3. With this tool, we can simulate the

http://reportsascm.iec.cat40

http://reportsascm.iec.cat


Romain Gay

gossiping algorithm of the hypercube graph in many other graphs, and get almost optimal algorithms. This
is done for cube-connected cycles and butterfly networks by Hromkovic, Klasing and Stöhr [7], for the grid
by Hromkovic, Klasing, Stöhr and Wagener [8], or more recently for circulant graphs (whose definition is
given in Section 4) by Mans and Shparlinski [15]. These are standard graphs, structurally close to the
hypercube. In [15], the gossiping algorithm given by the authors only works for the subclass of circulant
graphs whose generator set is of size two.

In Section 4, we give an algorithm which works in almost optimal time for a wider subclass of circulant
graphs, in particular for circulant graphs whose generator set is of any size. Finally, we extend the gossiping
algorithm working for the circulant graphs to a more general class of Cayley graphs.

1.3 Definitions and notations

We recall here some basic definitions of graph theory. Throughout, [n] denotes the set {1, ... , n}. Let
G be a graph. Except if mentioned explicitly, the graphs we consider are undirected and connected. We
denote by V (G ) its set of vertices, and by E (G ) its set of edges. A path in G is a sequence of distinct
vertices u0u1 · · · ul , where for all i in {0, ... , l − 1}, {ui , ui+1} is an edge of G . The length of the path,
l , may be equal to 0, in which case the path is reduced to the vertex u0. We denote by P(G ) the set of
all paths in G . We say that an edge e ∈ E (G ) belongs to the path p ∈ P(G ) if we have p = u0u1 · · · ul

and e = {ui , ui+1}, for some i ∈ {0, ... , l − 1}. Similarly, u belongs to p if we have u = ui for some
i ∈ {0, ... , l}. We say that two paths p and p′ of P(G ) are vertex-disjoint if and only if there is no vertex
u of V (G ) that belongs to p and p′. Similarly, they are edge-disjoint if and only if there is no edge e
in E (V ) belonging to p and p′. For any path p = u0 · · · ul ∈ P(G ), we call the vertices u0 and ul the
extremities of p.

Here we give the definition of a broadcast algorithm, an accumulation algorithm, and a gossiping
algorithm, which are of fundamental importance. A communication algorithm A for the VDP mode (resp.
EDP mode) in the graph G is defined by a sequence of t(A) rounds E1, E2, ... , Et(A), with a round Ei

being a set of pairwise vertex-disjoint paths of G (resp. pairwise edge-disjoint paths of G ). The integer
t(A) is the complexity of A. Moreover, each node of V (G ) can not be the extremity of more than one
path of Ei . For every vertex v ∈ V (G ) and for all r ∈ {0, ... , t(A)}, we denote by Iv (r) the set of
information known to v after the r -th round of algorithm A. Iv (r) is defined recursively by Iv (0) = {v},
and Iv (r) = Iv (r − 1) ∪ Iw (r − 1) if there exists a path p of the form p = v , ... , w or p = w , ... , v in Er ;
Iv (r) = Iv (r − 1) otherwise.

A is a broadcast algorithm for the set of vertices U ⊆ V (G ) if for all v in V (G ), we have U ⊆ Iv (t(A)).
Similarly, A is an accumulation algorithm for the set of vertices U ⊆ V (G ) if

⋃
u∈U Iu(t(A)) = V (G ). A is

a gossiping algorithm if for all v in V (G ), we have Iv (t(A)) = V (G ). In other words, a gossiping algorithm
performs communication between the nodes in such a way that at the end of the algorithm, every node
knows the secret of every other node. We call the gossip complexity of a graph the minimal number of
rounds to achieve the gossiping in this graph. More precisely, if we denote by AG

VDP the set of all gossiping
algorithms for the VDP mode in G (resp. AG

EDP for the EDP mode), the gossip complexity of G for the
VDP mode, gVDP(G ), is

gVDP(G ) = min
A∈AG

VDP

{t(A)} , (resp. gEDP(G ) = min
A∈AG

EDP

{t(A)}).

We define similarly the broadcast complexity and the accumulation complexity for a set of vertices U ⊆
V (G ) of a graph G , which we denote, respectively, by bVDP(G , U) and aVDP(G , U) for the VDP mode,
and bEDP(G , U) and aEDP(G , U) for the EDP mode.
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2. A lower bound for the gossip complexity

In this section, we give a general lower bound on the gossip complexity of any graph for the VDP and EDP
modes. In [8], J. Hromkovic et al. prove a lower bound on the gossip complexity of any graph, depending on
its bisection width. We can actually prove a more general lower bound, which depends on the isoperimetric
number of the graph. We first give the definition of the two notions of bisection width and isoperimetric
number of a graph. Then, in Theorem 2.1, we generalize the lower bound of J. Hromkovic et al. [8].
In [10], R. Klasing gives a slightly better lower bound on the gossip complexity of a graph in terms of its
bisection width. It is also possible to generalize this lower bound, and obtain Theorem 2.2.

Let G = (V , E ) be a graph. For every U ⊆ V , we denote by ∂in(U) the inner vertex-boundary of U,
defined by

∂in(U) =
{

u ∈ U : ∃v ∈ V \ U, {u, v} ∈ E
}

.

Similarly, we denote by e(U) the inner edge-boundary of U, defined by

e(U) =
{
{u, v} ∈ E : u ∈ U, v ∈ V \ U

}
.

The vertex bisection width vbw(G ) of G is defined by

vbw(G ) = min

{
|∂in(U)| : U ⊂ V ,

⌊
|V |
2

⌋
≤ |U| ≤

⌈
|V |
2

⌉}
.

Similarly, the edge bisection width ebw(G ) of G is defined by replacing |∂in(U)| by |e(U)| in the above
definition. More generally, the vertex isoperimetric number of G is

vi(G , t) = min
{
|∂in(U)| : U ⊂ V , |U| = t

}
,

and the edge isoperimetric number ei(G , t) is obtained by replacing |∂in(U)| by |e(U)| in the above defi-
nition. Intuitively, the isoperimetric number tells us if there is a bottleneck in a given graph, which would
imply a high gossip complexity.

We can now state the theorem for the VDP mode.

Theorem 2.1. Let G = (V , E ) be a graph and (V1, V2) a partition of its vertex set into parts of size
|V1| = n1 and |V2| = n2. Let k = |∂in(V1)| and l = |e(V1)|. Then

gVDP(G ) ≥ log(n1n2)− log(k)− log(log(n1))− 2

and

gEDP(G ) ≥ log(n1n2)− log(l)− log(log(n1))− 2.

In particular, the inequality holds for k = maxt vi(G , t), and l = maxt ei(G , t).

We give the proof of Theorem 2.1 for the VDP mode. The proof for the EDP mode is obtained similarly,
replacing the inner boundary ∂in(V1) by the edge boundary e(V1).

Proof. Let G = (V , E ) be a graph, (V1, V2) a partition of its vertex set into parts of size |V1| = n1 and
|V2| = n2, and k = |∂in(V1)|. The idea of the proof is to estimate how much information can flow from
V1 to V2.
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Let A = E1, ... , Et(A) be a gossiping algorithm for G . For all r ∈ {0, ... , t(A)}, Iv (r) is the information
known by v after the rth round, as defined in Section 1.3. We define I 1v (r) as I 1v (r) := Iv (r) ∩ V1, and
I (r) :=

⋃
v∈V2

I 1v (r). The value I (r) represents the information that has gone from V1 to V2 during the
first r rounds. Since A is a gossiping algorithm, every node v ∈ V2 knows the information of all nodes
in V1 after t(A) rounds, that is, it must be

I (t(A)) ≥ |V1| · |V2| = n1n2. (1)

Now we give an upper bound on I (t(A)). For all r ∈ {0, ... , t(A)}, we define

Î (r) :=
⋃

v∈∂in(V1)

I 1v (r).

The value Î (r) represents the amount of information that can go from V1 to V2 in round r . We observe
that the amount of information of a node can be at most doubled in each round. That is, for all v in V1

and for all r in {0, ... , blog(n1)c}, we have I 1v (r) ≤ 2r . Therefore, we have

Î (r) ≤ k min(2r , n1). (2)

The amount of information from V1 already present in V2 in round r can be at most doubled in round
r + 1:

I (r + 1) ≤ 2I (r) + Î (r). (3)

Combining equations (2) and (3), we get:

• For all 0 ≤ r ≤ log(n1), I (r + 1) ≤ 2I (r) + k2r .

• For all log(n1) ≤ r , I (r + 1) ≤ 2I (r) + kn1.

By induction, I (r) ≤ r · k · 2r−1 for all 0 ≤ r ≤ log(n1). Moreover, for all r > log(n1), we obtain that
I (r) ≤ k · 2r−1 (log(n1) + 1)− n1k

2 . In particular, for r = t(A), equation (1) yields

n1n2 ≤ I (r) ≤ k · 2t(A)−1(log(n1) + 1).

Therefore, by taking logarithms to both sides of the inequality, we get

log(n1n2)− log(k)− log(log(n1))− 2 ≤ t.

The result for the EDP mode can be obtained similarly.

In [10], R. Klasing proves that we can improve the lower bound of J. Hromkovic et al. [8]. More
precisely, he shows that we have a gossip complexity of at least 2 log(n) − log(k) − log(log(k)) + O(1)
for any graph of order n and bisection width k . We can generalize the lower bound in [8] to obtain the
following theorem.

Theorem 2.2. Let G = (V , E ) be a graph and (V1, V2) a partition of its vertex set, of size |V1| = n1 and
|V2| = n2. We denote by k = |∂in(V1)| and l = |e(V1)|. Then

gVDP(G ) ≥ log(n1n2)− log(k)− log(log(k)) + O(1)

and
gEDP(G ) ≥ log(n1n2)− log(l)− log(log(l)) + O(1).

In particular, the inequality holds for k = maxt vi(G , t), and l = maxt ei(G , t).

We omit the proof due to lack of space. It can be found in [6].
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3. Basic examples, embeddings and three phase
algorithms

In this section we recall the gossip complexity of some basic graphs, including the hypercube. Then we
present the concept of embedding, thanks to which we can extend the gossiping algorithm for the hypercube
to other similar graphs. Finally we present the so-called three phase algorithm strategy which will prove
useful later on.

3.1 Basic examples

We first give a general lower bound for the gossip complexity in any graph.

Lemma 3.1. For any graph G = (V , E ), for all v in V and for all 0 ≤ r ≤ blog(n)c, |Iv (r)| ≤ 2r . In
particular,

gVDP(G ) ≥ gEDP(G ) ≥ log n.

Proof. By induction on r . Let v ∈ V . For r = 0 we have |Iv (0)| = 1. For all r < blog(n)c, either there
exists w in V such that |Iv (r + 1)| = |Iv (r) ∪ Iw (r)| ≤ 2r+1, or |Iv (r + 1)| = |Iv (r)| ≤ 2r ≤ 2r+1.

The hypercube is a widely used graph which is known to have good communication properties, especially
for the gossiping problem. We recall its definition here.

Definition 3.2. For all k ≥ 2, d ≥ 1, the k-ary hypercube of dimension d , H(k, d), is the graph defined by
the set of vertices V = {0, ... , k−1}d , and the set of edges E such that ∀α = a1 · · · an, β = b1 · · · bn ∈ V ,
{α,β} ∈ E if and only if ∃i ∈ {1, ... , d} such that bi 6= ai and, ∀j ∈ {1, ... , d}\{i}, bj = aj .

Theorem 3.3 (Hromkovic, Klasing, Stöhr, [7]). For all k ≥ 2 and d ≥ 1,

ddlog(k)e ≤ gEDP(H(k, d)) ≤ gVDP(H(k , d)) ≤ d(dlog(k)e+ 1).

According to this theorem, the hypercube is the best graph for gossiping, together with the complete
graph. For the latter, we have the following result by Knödel [11].

Theorem 3.4 (Knödel [11]). For all n ∈ N, let Kn be the complete graph of size n. Then

dlog(n)e ≤ gVDP(Kn) = gEDP(Kn) ≤ dlog(n)e+ 1.

3.2 Embeddings

We have seen that we can gossip in a really efficient way in the hypercube. In many other graphs, we
can use similar algorithms to gossip efficiently. More generally, many graphs “contain” other subgraphs in
which we know how to gossip efficiently. In order to transfer results from the subgraph to the super-graph,
we use the concept of embedding.

We give the definitions of an embedding, its load, and its vertex and edge-congestion, which can be
found in Kolman [12]. We also introduce new definitions, such as vertex and edge-congestion for an
algorithm A, which will be useful in the next section.
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• Let G and H be two undirected graphs. An embedding of the graph G into the graph H is a
mapping f of the vertices of G into the vertices of H, together with a mapping g of edges of G into
paths in H, such that g assigns to each edge {u, v} ∈ E (G ) a path from f (u) to f (v) in P(H).

• The load of the embedding is the maximum number of vertices of G mapped to a single vertex of H:

load(f , g) = max
v∈V (H)

∣∣{u ∈ V (G ) : f (u) = v}
∣∣.

The edge-congestion econg(f , g) is defined by

econg(f , g) = max
e∈E(H)

∣∣{e ′ ∈ E (G ) : e belongs to g(e ′)}
∣∣.

Similarly, the vertex-congestion vcong(f , g) is defined by

vcong(f , g) = max
u∈V (H)

∣∣{e ′ ∈ E (G ) : u belongs to g(e ′)}
∣∣.

• We do not need all paths in g(E (G )) to be pairwise vertex or edge disjoint, because not all edges are
used at the same time by a communication algorithm. That is why we introduce a weaker notion.
Let A = E1, E2, ... , Et(A) be a communication algorithm.

For all e ∈ E (G ) and for all r ∈ {1, ... , t(A)}, we say that e is active in round r if and only if there
exists a path p ∈ Er such that e belongs to p. We denote by AE(r) the set of active edges in round r .

In the same way, for all u ∈ V (G ), we say that u is active in round r if and only if there exists a
path p ∈ Er such that u belongs to p. We denote by AV(r) the set of active vertices in round r .

We define the vertex congestion for algorithm A, vcong
A(f , g), by

vcong
A(f , g) = max

r∈{1,...,t(A)},u∈V (H)

∣∣{e ′ ∈ AE(r) : u belongs to g(e ′)}
∣∣.

Similarly,
econg

A(f , g) = max
r∈{1,...,t(A)},e∈E(H)

∣∣{e ′ ∈ AE(r) : e belongs to g(e ′)}
∣∣.

Finally, we define loadA(f , g) by

loadA(f , g) = max
r∈{1,...,t(A)},v∈V (H)

∣∣{u ∈ AV(r) : f (u) = v}
∣∣.

With the above definitions we can now state our theorem. This theorem in implicit in [7, 8, 9, 15].

Theorem 3.5. Let G = (V (G ), E (G )) and H = (V (H), E (H)) be two graphs. If A is a gossiping algorithm
for G in the VDP mode (resp., EDP mode), which runs in t(A) rounds; and if f ,g is an embedding of G
into H such that loadA(f , g) = 1, and vcong

A(f , g) = 1 (resp. econg
A(f , g) = 1), then we can gossip

among the set of vertices f (V (G )) in H in less than t(A) rounds in the VDP mode (resp., the EDP mode).

Proof. We extend the function g : E (G )→ P(H) on the paths of G via

g(u0u1 · · · ul) = g({u0, u1})g({u1, u2}) · · · g({ul−1ul})

for all u0u1 · · · ul ∈ P(G ), i.e., we concatenate the images of all edges of the path u0u1 · · · ul .
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Let A = E1E2 · · ·Et(A) be the gossiping algorithm of G for the VDP mode. We construct an algorithm A′

which performs the gossiping among f (V (G )) in H in t(A) rounds as follows: whenever the vertex u ∈ V (G )
communicates with v ∈ V (G ) through the path p ∈ P(G ), f (u) ∈ V (H) communicates with f (v) ∈ V (H)
through the path g(p) ∈ P(H). It is well defined because f (u) 6= f (v), since loadA(f , g) = 1. Let
r ∈ {1, ... , t(A)} such that Er = {p1, ... , pl}, l ≥ 1. Since vcong

A(f , g) = 1, {g(p1), ... , g(pl)} is a set of
vertex-disjoint paths of P(H). At the end of algorithm A′, for each vertex u ∈ V (G ),

If (u)(t(A)) =
⋃

v∈V (G),f (v)=f (u)

f (Iv (t(A)),

so If (u)(t(A)) = f (V (G )). Therefore A′ performs the gossiping among f (V (G )) properly for the VDP
mode. An analogous argument works for the EDP mode.

3.3 Three phases algorithm

In most of the hypercube-like graphs, we use a gossiping algorithm that first accumulates the information
of the entire graph into a subgraph, then gossip in the subgraph as in the hypercube, and finally broadcast
the information to the whole graph. This is called a three-phase algorithm.

Definition 3.6. We say a gossiping algorithm is a three-phase algorithm if it performs an accumulation
phase, then a gossiping phase, and finally a broadcast phase:

1. Accumulation phase: G is divided into connected components (called accumulation components),
each component containing exactly one accumulation node. This node accumulates the information
from the nodes lying in its component.

2. Gossip phase: Let a(G ) be the set of all accumulation nodes in G . A gossiping algorithm is performed
among the nodes in a(G ). All nodes in V (G ) − a(G ) are considered to have no information, and
they are only used to build disjoint paths between receivers and senders from a(G ).

3. Broadcast phase: Every node in a(G ) broadcasts the information to its component.

Here we present a useful lemma on the number of rounds needed to accumulate all the information of
the path of length n ∈ N∗ into one vertex at the end of the path.

Lemma 3.7 (Feldmann, Hromkovic, Monien, Madhavapeddy and Mysliwietz, [4]). For all n ∈ N∗, let Pn

be the path of length n, i.e the graph with vertex set {0, ... , n − 1} and edge set E = {{i , i + 1}, i ∈
{0, ... , n − 2}}. Then

bVDP(Pn, {0}) = aVDP(Pn, {0}) = bEDP(Pn, {0}) = aEDP(Pn, {0}) ≤ dlog(n)e.

4. Gossiping in circulant graphs

In this section, we present the main results of this paper. Mans and Shparlinski [15] gave an optimal
gossiping algorithm for some circulant graphs whose generator set is of size two. We exhibit a gossiping
algorithm for more general circulant graphs whose generator set can be of any size.
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We recall here the definitions of Cayley graphs and circulant graphs, which are a particular type of
Cayley graphs.

Let (G , +) be an additively written group, and let S ⊆ G be a subset of G . The Cayley graph Γ(G , S)
is the graph with vertex set V = G and set of arcs E such that for all u, v ∈ V , (u, v) ∈ E if and only if
there exists s ∈ S such that v = u + s. If Γ(G , S) is to be connected, S must be a generating set of G . If
we want Γ(G , S) to be undirected, S must be symmetric, i.e. of the form S = {±s1, ... ,±sr}.

For example, for k ≥ 2 and d ≥ 1, the k-ary hypercube of dimension d , H(k , d), is the Cayley graph
Γ(Zd

k , S), with S =
⋃

i∈[d ]{±λ · ei : λ ∈ [k − 1]}, where ei is the vector whose coordinates are all zero
except for the i-th coordinate, which is 1. We can generalize Theorem 3.3 for the k-ary hypercube of
dimension d in the following way.

Theorem 4.1. Let d ≥ 1, k1, k2, ... , kd ≥ 2. Let S =
⋃

i∈[d ]{±λ · ei : λ ∈ [ki − 1]}. Then∑
i∈[d ]

dlog(ki )e ≤ gEDP

(
Γ(Zk1 × Zk2 · · · × Zkd , S)

)
≤ gVDP

(
Γ(Zk1 × Zk2 · · · × Zkd , S)

)
≤
∑
i∈[d ]

(
dlog(ki )e+ 1

)
.

Proof. The lower bound comes from Lemma 3.1. For the upper bound, we use Algorithm 1.

Algorithm 1 Gossip
(

Γ
(∏d

i=1 Zki , S
))

for i = 1 to d do
for all α ∈

∏i−1
j=1 Zkj and β ∈

∏d
l=i+1 Zkl do in parallel

gossip in Lα,β = {αmβ : m ∈ {0, ... , ki − 1}}
end do in parallel

end for

procedure Gossip in Lα,β = {αmβ : m ∈ {0, ... , ki − 1}}
do in parallel

Gossip in {αmβ : m ∈ {0, ... ,
⌊
ki
2

⌋
− 1}} and

Gossip in {αmβ : m ∈ {
⌊
ki
2

⌋
, ... , ki − 1}}

end do in parallel

for l = 0 to
⌊
ki
2

⌋
− 1 do in parallel

exchange information between αlβ and α(m − l − 1)β
end do in parallel

end procedure

For all i ∈ [d ], and for all α ∈
∏i−1

j=1 Zkj , β ∈
∏d

l=i+1 Zkl , the subgraph Lα,β induced by the set of
vertices {αmβ : m ∈ {0, ... , ki − 1}} is a clique, so we can gossip in Lα,β with the procedure Gossip
of Algorithm 1. This procedure uses the algorithm of the complete graph Kki , which works in at most
dlog(ki )e + 1 rounds according to Theorem 3.4. So the total number of rounds needed to gossip in
Γ(Zk1 × Zk2 · · · × Zkd , S) is at most

∑
i∈[d ](dlog(ki )e+ 1).
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Gossiping in circulant graphs

When G = Zn is the cyclic group and S = −S ⊆ Zn is a symmetric subset of Zn, the Cayley graph
Γ(Zn, S) is called a circulant graph, and will be denoted by C (n, S). In the next theorem, we give a lower
bound of the gossip complexity for any circulant graph using Theorem 2.2. The result was obtained by
Mans and Shparlinski [15].

Theorem 4.2. For all n,r ∈ N∗, for all S = {±s1, ... ,±sr} ⊆ Zn such that s1 ≤ s2 ≤ · · · ≤ sr ,

gVDP(C (n, S)) ≥ 2 log(n)− log(sr )− log(log(sr )) + O(1)

and

gEDP(C (n, S)) ≥ 2 log(n)− log(rsr )− log(log(rsr )) + O(1).

Proof. We number the nodes from 0 to n− 1. Let V1 = {0, ... , bn2c− 1} and V2 = {bn2c, ... , n− 1}. Then
∂Gin (V1) ⊆ {0, ... , sr − 1} ∪ {bn2c − sr , ... , bn2c − 1}, because for all u ∈ {sr , ... , bn2c − sr − 1}, and all v
in V2, we have that v − u > sr mod n, so {u, v} /∈ E . Thus, |∂Gin (V1)| ≤ 2sr . Theorem 2.2 then yields

gVDP(C (n, S)) ≥ log
(⌊n

2

⌋
·
⌈n

2

⌉)
− log(sr )− log(log(sr )) + O(1)

≥ 2 log(n)− log(sr )− log(log(sr )) + O(1).

It is easy to check that |e(V1)| ≤ 2
∑r

i=1 si ≤ 2rsr ; for further details, see [15]. Theorem 2.2 yields

gEDP(C (n, S)) ≥ log
(⌊n

2

⌋
·
⌈n

2

⌉)
− log(2rsr )− log(log(2rsr )) + O(1)

≥ 2 log(n)− log(rsr )− log(log(rsr )) + O(1).

This concludes the proof.

For particular instances of S , we know an algorithm which matches the previous lower bound. For

instance, when S =
{
±1,±n1/r , ... ,±n(r−1)/r}, then C (n, S) admits the grid Gr(n

1
r , r) as a spanning

subgraph. So we can apply the algorithm of the grid of [8] which matches the lower bound. But in the
general case, we do not know whether the previous lower bound is tight. In this paper, we find an algorithm
for a general class of circulant graphs, which (almost) matches the lower bound. Such an approach can
be found in [15], where B. Mans and I. E. Shparlinski find an (almost) optimal gossiping algorithm for
circulant graphs where r = 2. More precisely, they prove that if S = {±1,±s2} and s2 ≤ 2bp/s2c, then the
lower bound of Theorem 4.2 is tight. In fact, they give an algorithm which performs in (almost) optimal
time. We have generalized this approach to arbitrary r .

Theorem 4.3. Let n ∈ N∗, and C (n, S) be a circulant graph with generating set S = {±s1, ... ,±sr}. If
s1 = 1, s1 < s2 < · · · < sr and

⌈ si+1

si

⌉
≤ 2 n

sr
for all i ∈ [r − 1], then

2 log(n)− log(sr ) + 2r ≥ gVDP(C (n, S)) ≥ 2 log(n)− log(sr )− log(log(sr )) + O(1)

and

2 log(n)− log(sr ) + 2r ≥ gEDP(C (n, S)) ≥ 2 log(n)− log(rsr )− log(log(rsr )) + O(1).

Proof. We exhibit a three phase algorithm that works in at most 2 log(n) − log(sr ) + 2r rounds for the
VDP mode.
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Accumulation phase:

We number the nodes of C (n, S) from 0 to n− 1, and identify each node with its number. We choose the
accumulation nodes a(G ) to be {0, ... , sr − 1}, and the accumulation components to be

Aj = {i ∈ Zn : i = j mod sr} , for all j ∈ {0, ... , sr − 1} .

All accumulation components are of size at most
⌊
(n − 1)/sr

⌋
+ 1. So the accumulation phase takes

at most
⌈
log
(⌊

(n − 1)/sr
⌋

+ 1
)⌉

many rounds, which in turn is at most log
(
n/sr

)
+ 1.

Gossip phase:

To simplify the proof, we suppose that

si+1

si
= qi ∈ N for all i ∈ [r − 1]. (4)

Let S ′ =
⋃

i∈[r−1]
{
±λ · ei : λ ∈ [qi − 1]

}
. The Cayley graph Γ

(
Zq1 × Zq2 × · · · × Zqr−1 , S ′

)
is

embedded into C (n, S), where f :
∏r−1

i=1 Zqi → Zn is defined for all a1a2 · · · ar−1 ∈
∏r−1

i=1 Zqi by

f (a1a2 · · · ar−1) =
r−1∑
i=1

ai · si ∈ Zn.

Let u = a1 · · · ar−1 be a node in
∏r−1

l=1 Zql , and v = a1 · · · ai−1a′iai+1 · · · ar−1, with ai < a′i . Then
g(u, v) is defined to be the path which goes from vertex f (u) =

∑
j∈[r−1] aj · sj to

∑
j∈[r−1] aj · sj + ta,b · sr

through ta,b chords +sr , then to vertex∑
j∈[r−1]\{i}

aj · sj + a′i · si + ta,b · sr

through a′i − ai chords +si , and finally to vertex∑
j∈[r−1]\{i}

aj · sj + a′i · si

through ta,b chords −sr . We choose ta,b =
⌊
b−a
2

⌋
. For an illustration of the embedding (f , g), see Figure 1.

According to Theorem 3.4, there is a gossiping algorithm A for Γ
(∏r−1

i=1 Zqi , S ′
)

for the VDP mode,

which works in at most
∑r−1

i=1

(
dlog(qi )e + 1

)
≤ log(sr ) + 2(r − 1) rounds. It is easy to check that the

load of the embedding f , g for algorithm A is one. We show that vcong
A(f , g) = econg

A(f , g) = 1. In
Algorithm A, in each round, the exchanges of information are of the form

a = a1 · · · ar−1 ∈
∏r−1

i=1 Zqi exchanges its information with a′ = a1 · · · ai−1a′iai+1 · · · ar−1, with ai < a′i .

Suppose that in the same round,

b = b1 · · · br−1 exchanges its information with b′ = b1 · · · bi−1b′ibi+1 · · · br−1, with bi < b′i .

By the construction of algorithm A (see Algorithm 1), bi < ai and a′i < b′i , or ai < bi and b′i < a′i . So
ta,a′ 6= tb,b′ , and vAcong(f , g) = 1. Therefore, by Theorem 3.5, there is an algorithm A′ that performs the

gossiping in f
(∏r−1

i=1 Zqi

)
= {0, ... , sr − 1} in at most log(sr ) + 2(r − 1) rounds for the VDP mode. A′ is

described in Algorithm 2.
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Gossiping in circulant graphs

Figure 1: C (n, S), with S = {±1,±5,±10}

Broadcast phase:

By symmetry, the broadcast phase takes at most log
(
p/sr

)
+ 1 rounds, just like the accumulation phase.

Therefore the total number of rounds needed to gossip in C (n, S) is at most 2 log(n)− log(sr ) + 2r .

In the case where we do not assume condition (4) anymore, we need to slightly modify Algorithm 2,
but the essential arguments remain the same. This concludes the proof of Theorem 4.3.

We have exhibited an algorithm that matches the lower bound on the gossip complexity for some
circulant graphs (up to a log(log(n)) factor, n being the size of the graph). We must note that, even if
the condition for the generating set is a generalization of the one imposed by Mans and Shparlinsky, the
number of generating sets satisfying it is asymptotically small. Thus the problem of providing a gossiping
for circulant graphs is still open.

The results we have found for circulant graphs can be extended to more general Cayley graphs. Let
p be a prime number, d ≥ 1, and S ⊆ Zd

p . We investigate gossiping in Γ(Zd
p , S), and note that circulant

graphs are the particular case where d = 1. We can give an upper bound of the bisection width of these
graphs, and therefore bound their gossip complexity. We do so in Theorem 4.4. In Theorem 4.5, we show
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Algorithm 2 Gossip(C (n, S))

for i = 1 to r − 1 do
for all α ∈

∏i−1
j=1 Zqj and β ∈

∏r−1
l=i+1 Zql , do in parallel

Gossip in Lα,β = {f (αmβ), m ∈ {0, ... , qi − 1}}, where f (a1 ... ar−1) =
∑r−1

i=1 ai · si
end do in parallel

end for
procedure Gossip Lα,β

do in parallel
Gossip

{
f (αmβ), m ∈

{
0, ... ,

⌊qi
2

⌋
− 1
}}

and
Gossip

{
f (αmβ), m ∈

{⌊qi
2

⌋
, ... , r − 1

}}
end do in parallel
for l = 0 to

⌊qi
2

⌋
− 1 do in parallel

exchange information between f (αlβ) and f (α(qi − 1− l)β)
through the path g(αlβ,α(qi − 1− l)β), with g defined in the proof of Theorem 4.3.

end do in parallel
end procedure

that this lower bound is tight (up to a log(log(n)) factor, where n is the size of the graph).

Theorem 4.4. Let S = {~u1, ... ,~ur} ⊆ Zd
p . For all i ∈ [r ], we write ~ui = (ui

1 ... , ui
d). For all l ∈ [d ], we

write Ml = maxj∈[r ] uj
l , and Sl =

∑r
j=1 uj

l . Then

gVDP

(
Γ(Zd

p , S)
)
≥ (d + 1) log(p)− log min

l∈[d ]
Ml

and

gEDP

(
Γ(Zd

p , S)
)
≥ (d + 1) log(p)− log min

l∈[d ]
Sl .

Proof. The idea is the same as in Theorem 4.2. Let l ∈ [d ]. We take V1 = Zl−1
p ×{0, ... , bp2c− 1}×Zd−l

p

and V2 = Zl
p × {b

p
2c, ... , p − 1} × Zd−l−1

p . Then

∂Gin (V1) ⊆ Zl−1
p × {0, ... , Ml − 1} ∪

{
bp2c −Ml , ... , bp2c − 1

}
× Zd−l

p ,

because

vl − ul > Ml mod p

for all u = (u1, ... , ud) ∈ Zl−1
p × {Ml , ... , bp/2c −Ml − 1} × Zd−l

p and all v = (v1, ... , vd) ∈ V2, so that

{u, v} /∈ E . Thus, |∂Gin (V1)| ≤ 2Mlp
d−1. This is true for any l ∈ [d ], so vbw(G ) ≤ 2 minl∈[d ] Mlp

d−1. So
applying Theorem 2.2, we get the result of Theorem 4.4. Similarly, we can show that |e(V1)| ≤ 2Sl for
any l ∈ [d ] and then get the result of Theorem 4.4 for the EDP mode.

Consider the Cayley graph Γ(Zd
p , S) with generating set S = {±s1, ... ,±sr}. For this graph to be

connected, we need to have d linearly independent vectors in the set {s1, ... , sr}, thus in particular r ≥ d .
Moreover, if r = d then Γ(Zd

p , S) admits the grid Gr(p, d) as a spanning subgraph, and applying the
algorithm of [8] gives an optimal gossiping algorithm. So the interesting case is when r > d .
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Theorem 4.5. Let p be a prime, and let d , r ∈ N∗ such that r > d. Let S = {±~u1, ... ,±~ur} ⊆ Zd
p

such that S generates Zd
p . For all i ∈ [r ], we write ~ui = (ui

1, ... , ui
d), and assume that ~ui = λiei for all

i ∈ [d − 1], where ei is the i-th standard vector as above and λi ∈ Zp.

If ud
d = 1, ud

d < ud+1
d < · · · < ur

d , and
⌈
ui+1
d

uid

⌉
≤ 2 p

urd
for all i ∈ {d , ... , r − 1}, then

gVDP(Γ(Zd
p , S)) ≤ (d + 2) log(p) + log(ur

d) + 2r − log(log(p)) + O(1),

gVDP(Γ(Zd
p , S)) ≥ 2 log(p)− log(ur

d)− log(log(ur
d)) + O(1),

and

gEDP(Γ(Zd
p , S)) ≤ (d + 2) log(p) + log(ur

d) + 2r − log(log(p)) + O(1),

gEDP(Γ(Zd
p , S)) ≥ 2 log(p)− log(rur

d)− log(log(rur
d)) + O(1).

We omit the proof of this theorem, which can be found in [6].

5. Conclusion and open problems

We have given an (almost) optimal gossiping algorithm for a class of circulant graphs. Furthermore, we
have shown that we can extend this algorithm to a more general class of Cayley graphs. Finding an optimal
gossiping algorithm for all circulant graphs remains an open problem.

It would also be interesting to look for a general algorithm that performs gossiping for a larger class of
Cayley graphs. This may also involve looking for better lower bounds for Cayley graphs.

Furthermore, there are other graphs whose structure is close to the hypercube for which we don’t know
any optimal gossiping algorithm. This the case for the De Bruijn graph. In [6], a gossiping algorithm for
this graph is given, but it still far from the known lower bound. In general, any graphs that are good
expanders are worth studying for the gossiping problem.

Another interesting problem would be to investigate different kinds of gossiping algorithms. For instance,
random gossiping algorithms have been studied for the complete graph [5], for the hypercube [3], or for
the grid, but to the best of our knowledge, no such results are known for circulant or Cayley graphs.
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[11] W. Knödel. New gossips and telephones. Dis-
crete Mathematics, 13:95, 1975.

[12] P. Kolman. Searching for Edge Disjoint Paths
on Hypercube-like Topologies. PhD thesis, Fac-
ulty of Mathematics and Physics Charles Uni-
versity, Prague, September 1998.

[13] D. W. Krumme, G. Cybenko, and K. N.
Venkataraman. Gossiping in minimal time.
SIAM J. on Computing, 21:111–139, 1992.

[14] R. Labahn and I. Warnke. Quick gossiping by
telegraphs. Discrete Mathematics, 126:421–
424, 1994.

[15] B. Mans and I. E. Shparlinski. Random walks
and bisections in random circulant graphs.
LATIN, pages 542–555, 2012.

53Reports@SCM 1 (2014), 39–53; DOI:10.2436/20.2002.02.4.


	Introduction and definitions
	Motivation
	Synopsis
	Definitions and notations

	A lower bound for the gossip complexity
	Basic examples, embeddings and three phase  algorithms
	Basic examples
	Embeddings
	Three phases algorithm

	Gossiping in circulant graphs
	Conclusion and open problems

