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∗Jaume Franch

Universitat Politècnica de
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Resum (CAT)
Aquest article estudia el càlcul de les sortides planes mitjançant la forma normal

de Goursat del sistema de Pfaff associat a qualsevol sistema de control en variables

d’estat. L’algorisme consta de tres passos: i) transformació del sistema de

control en el seu sistema de Pfaff equivalent; ii) càlcul de la forma normal de

Goursat; iii) reescriptura de les equacions en les noves variables d’estat. Aqúı, una

realimentació simplifica les equacions i, per tant, les sortides planes es calculen de

manera senzilla. L’algorisme s’aplica a un vehicle amb rodes extensibles. Gràcies a

la propietat de planitud diferencial, s’obtenen les trajectòries entre dos punts donats.

Abstract (ENG)
This paper is devoted to computation of flat outputs by means of the Goursat

normal form of the Pfaffian system associated to any control system in state space

form. The algorithm consists of three steps: i) transformation of the system into

its Pfaffian equivalent; ii) computation of the Goursat normal form; iii) rewriting of

the state space equations in the new variables. Here, a feedback law simplifies the

equations and, therefore, the flat outputs can be easily computed. The algorithm

is applied to a car with expanding wheels. Point to point trajectories are obtained

thanks to the property of differential flatness.

Keywords: Feedback linearization,
differential flatness, nonlinear control.
MSC (2010): 93B18, 93B29, 93C10.
Received: October 25th, 2013.
Accepted: January 29th, 2014.

Acknowledgement
The authors want to thank the support

of Ministerio de Ciencia e Innovación of

the Spanish Government under the project

MTM2011-22585.

1http://reportsascm.iec.cat Reports@SCM 1 (2014), 1–13; DOI:10.2436/20.2002.02.1.

On computing flat outputs through
Goursat normal form

http://reportsascm.iec.cat


On computing flat outputs through Goursat normal form

1. Introduction

Since 1980, the problem of feedback linearization for nonlinear control systems has been considered by
different authors in several frameworks. Different routes to linearization have been traced; namely, lin-
earization by static feedback; linearization by prolongations; linearization by dynamic feedback, and finally
flatness. The main mathematical tool to study these problems is differential geometry. Notions such as
Lie brackets and involutive fields or distributions, which can be found in basic books of nonlinear control
theory [9, 14], have been followed by differential forms and Pfaffian systems [3, 15].

Differential flatness was introduced in the 90’s by Michel Fliess and coworkers [5]. A differentially
flat nonlinear system can perform any point-to-point desired trajectory. Other systems do not hold this
property. Differentially flat systems are dinamically feedback equivalents to linear systems based on chains
of integrators. Initial and final conditions are transferred, through diffeomorphism, to the equivalent linear
system where the required inputs are designed. Inputs of the nonlinear system are obtained by application
of the diffeomorphism and the feedback law.

Unfortunately, necessary and sufficient conditions to check flatness for a general nonlinear system do
not exist. Since mid nineties, extensive work has been done in this direction, but only some particular cases
have been solved [6, 11, 12].

Control systems are usually presented in state space form. In this paper, we convert state space form
control systems into their equivalent Pfaffian systems [3, 15]. A Pfaffian system consists in a set of
independent one forms. These one forms are written in the Goursat normal form which, when transformed
again in state space equations, become very simple equations by addition of a feedback law and, hence,
allow to find the flat outputs in an easily manner.

This paper is organized as follows: Section 2 contains a summary on how to compute Goursat normal
forms for a set of independent one forms, as well as a brief introduction to nonlinear control systems. In
Section 3 the relationship between control systems in state space form and its equivalent Pfaffian system
is explained. The main contribution of this paper is the link between the Goursat normal form and the
computation of the flat outputs. The inclusion of a feedback law plays a crucial role in this sense. Details on
how to compute the flat outputs once the Goursat normal form is achieved are also explained. Section 4 is
devoted to illustrate the whole process through an example, which corresponds to a system with expanding
wheels [1]. Simulations are given in Section 5, where an additional control law is applied to overcome errors
in the initial conditions. The paper ends with the conclusions. A reduced version of this paper has been
accepted for publication at European Control Conference 2014 [7].

2. Background

2.1 Normal form for differential one forms

This section provides a very brief summary on how to compute normal forms for differential one forms. A
detailed approach can be found, for example, in [3, 15]. In the sequel, all the vector fields an differential
forms are supposed to be C∞.

Definition 2.1. A system of the form

α1 = α2 = · · · = αs = 0,
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where the αi are independent 1-forms on an n-dimensional manifold, is called a Pfaffian system.

Definition 2.2. A smooth codistribution smoothly associates a subspace of the cotangent space at each
point p ∈ M.

Definition 2.3. The sequence of decreasing codistributions

I (k) ⊂ I (k−1) ⊂ · · · ⊂ I (1) ⊂ I (0)

is called the derived flag of I (0), where

I (k+1) = {λ ∈ I (k) : dλ ≡ 0 mod I (k)}.

Definition 2.4. Let α ∈ Ω1(M). The integer r defined by (dα)r ∧ α 6= 0 and (dα)r+1 ∧ α = 0 is called
rank of α.

We are interested in transforming the generators of Pfaffian systems into a normal form by means of a
coordinate transformation. Let us study first Pfaffian systems of codimension 1, or systems consisting of
a single equation α = 0. The following theorem allows us, under a rank condition, to write α in a normal
form.

Theorem 2.5 (Pfaff Theorem). Let α ∈ Ω1(M) have constant rank r in a neighborhood of p. Then,
there exists a coordinate chart (U, z) such that, in these coordinates,

α = dz1 + z2dz3 + · · ·+ z2rdz2r+1.

The proof is constructive and is based on finding functions f1, ... , fr+1 and g1, ... , gr (2r + 1 < n, where
dimM = n) such that

(dα)r ∧ α ∧ df1 = 0,

(dα)r−1 ∧ α ∧ df1 ∧ df2 = 0,

up to fr ,

dα ∧ α ∧ df1 ∧ df2 ∧ · · · ∧ dfr = 0,

α ∧ df1 ∧ df2 ∧ · · · ∧ dfr 6= 0,

so that,
α = dfr+1 + g1df1 + · · ·+ grdfr .

A new set of variables, diffeomorphic to the state space variables, is defined as follows:

z1 = fr+1, z2i = gi , z2i+1 = fi ,

with 1 ≤ i ≤ r .

For Pfaffian systems of codimension two, a particular case is given by Pfaffian system with four variables.
The algorithm to transform the one forms into a canonical form is obtained in Engel’s theorem:

Theorem 2.6 (Engel’s Theorem). Let I be a dimension two codistribution, spanned by I = 〈α1,α2〉 of
four variables. Setting I (0) = I , if the derived flag satisfies

dim I (1) = 1,

dim I (2) = 0,

then there exist coordinates z1, z2, z3, z4 such that

I = {dz4 − z3dz1, dz3 − z2dz1}.

3Reports@SCM 1 (2014), 1–13; DOI:10.2436/20.2002.02.1.
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The proof is also constructive and uses the previous theorem.

Engel’s theorem can be generalized to a system with n configuration variables and n − 2 constraints.
The following theorem states the conditions required in order to convert a Pfaffian system into its Goursat
normal form.

Theorem 2.7 (Goursat Normal Form). Let I be a Pfaffian system spanned by s 1-forms, I = {α1, ... ,αs},
on a space of dimension n = s + 2, such that

dαs 6≡ 0 mod I .

Assume also that there exists an exact form π, with π 6= 0 mod I , satisfying the Goursat congruences

dαi ≡ −αi+1 ∧ π mod α1, ... ,αi , 1 ≤ i ≤ s − 1.

Then there exists a coordinate system z1, z2, ... , zn in which the Pfaffian system is in Goursat normal form,

I = {dz3 − z2dz1, dz4 − z3dz1, ... , dzn − zn−1dz1}.

Finally, in order to study Pfaffian systems of codimension greater than two, we will use the extended
Goursat normal form. That is, a Pfaffian system of codimension m + 1 and generated by n constraints of
the form

I = {dz j
i − z j

i−1dz0 : i = 1, ... , sj ; j = 1, ... , m}.
Conditions to convert a Pfaffian system into the extended Goursat normal form are given in the following
theorem:

Theorem 2.8 (Extended Goursat Normal Form). Let I be a Pfaffian system of codimension m + 1 in
Rn+m+1. The system can be put into the extended Goursat normal form if, and only if, there exists a set
of generators {αj

i : i = 1, ... , sj ; j = 1, ... , m} for I and an exact one-form π such that, for all j ,

dαj
i ≡ −α

j
i+1 ∧ π mod I (sj−i), i = 1, ... , sj − 1,

dαj
i 6≡ 0 mod I .

All the proofs of these theorems are constructive and are outlined in [3, 15].

2.2 Feedback linearization of control systems

Definition 2.9. A nonlinear control system

ẋ = f (x) +
m∑
i=1

gi (x)ui x ∈ Rn (1)

is said to be static feedback linearizable if it is possible to find a feedback

u = α(z) + β(z)v , u ∈ Rm, v ∈ Rm, z ∈ Rn,

and a local diffeomorphism
z = φ(x)

such that the original system is transformed into a linear controllable system

ż = Az + Bv ,

where A and B are matrices of appropriate size.
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Necessary and sufficient conditions to check static feedback linearization were given in [8, 10]. A
generalization of the static feedback linearization is a dynamic feedback transformation [4].

Definition 2.10. A nonlinear system

ẋ = f (x , u), x ∈ Rn, u ∈ Rm, (2)

is said to be dynamic feedback linearizable if there exists:

1. A regular dynamic compensator {
ż = a(x , z , v)
u = b(x , z , v)

(3)

with z ∈ Rq and v ∈ Rm. The regularity assumption implies the invertibility of (3) with input v and
output u.

2. A local diffeomorphism

ψ = Ψ(x , z) (4)

with ψ ∈ Rn+q, such that the original system (2) with the dynamic compensator (3), after apply-
ing (4), becomes a constant linear controllable system:

ψ̇ = Aψ + BV .

A system is dynamic feedback linearizable if, and only if, it is differentially flat. Differential flatness
was introduced by M. Fliess and coworkers in [5].

Definition 2.11. Let (1) be a nonlinear system with m inputs. Roughly speaking, this system is differentially
flat if there exist m functions (y1, ... , ym), equal in number to the number of inputs, such that:

1. Each variable yi is a function of the states, the inputs, and a finite number of the inputs derivatives.

2. The states and the inputs can be expressed as functions of the variables (y1, ... , ym) and their
derivatives up to a certain order.

The variables (y1, ... , ym) are called flat outputs.

The relationship between Goursat normal form of Pfaffian systems and nonholonomic [13] control
systems in state space form is as follows. Given a two input driftless system

ẋ = g1u1 + g2u2, x ∈ Rn,

in state space form, its equivalent Pfaffian system can be obtained by finding n − 2 one forms αi , such
that αiyg1 = 0 and αiyg2 = 0 for all i = 1, ... , n − 2.

By applying one of the above theorems, the Goursat normal form can be found. As explained above,
this includes the definition of a new set of state variables z1, ... , zn. The dynamics associated to the system
in these new variables is got by differentiation of each of these variables, which leads to

ż = g1(z)u1 + g2(z)u2.

5Reports@SCM 1 (2014), 1–13; DOI:10.2436/20.2002.02.1.
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Finally, the above system can be expressed as

ż1 = u1,
ż2 = u2,
ż3 = z2u1,

...
żn = zn−1u1,

(5)

by application of a feedback law. A similar algorithm can be applied to any nonholonomic system. The
structure of system (5) is very convenient in order to find the flat outputs.

3. Algorithm to find flat outputs

Consider the system given by

ẋ =
m∑
i=1

giui , x ∈ Rn,

where m is the number of controls and n the dimension of state space.

First of all, an equivalent formulation of the system in differential forms will be given. In order to
achieve this goal, n − m differential forms that annihilate the control vector fields must be found. Then,
the Pfaffian system consists in n −m equations:

ω1 = ω2 = ... = ωn−m = 0,

where ωi ∈ 〈g1, ... , gm〉⊥, i = 1, ... , n−m. Given a Pfaffian system in Rn+m+1, where n = n + m + 1 and
m = m + 1 is the transforming system codimension, these forms are expressed in their extended Goursat
canonical form

I = {ωj
i = dz j

i − z j
i+1dz0 : i = 1, ... , sj , j = 1, ... , m},

where sj satisfies that n = m + 1 +
∑m

j=1 sj .

At this point, the goal is to rewrite the system using vector fields. In order to do this, we must find
m + 1 vector fields that vanish on the ideal of forms, i.e., vector fields expressed in a generic form for
k = 0, ... , m as

gk =
(
a0, a11, ... , a1s1 , a1s1+1, ... , am1 , ... , amsm , amsm+1

)
meeting the following conditions:

gky


dz j

1 − z j
2 dz0

dz j
2 − z j

3 dz0
...

dz j
sj − z j

sj+1 dz0

 = 0, j = 1, ... , m.

A possible solution is g0 such that:
a0 = 1

aj1 = z j
2

...

ajsj = z j
sj+1

ajsj+1 = 0
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and

g j =
∂

∂z j
sj+1

, j = 1, ... , m

so that, in the new variables, the system reads:

ż0 = u0

ż1
1 = z1

2u0
...

ż1
s1 = z1

s1+1u0

ż1
s1+1 = u1

ż2
1 = z2

2u0
...

ż2
s2 = z2

s2+1u0

ż2
s2+1 = u2

...
żm
1 = zm

2 u0
...

żm
sm = zm

sm+1u0

żm
sm+1 = um.

(6)

Remark. The system obtained by application of the above algorithm and the system obtained by differen-

tiation of the system variables
{

z j
i , i = 1, ... , sj , j = 1, ... , m

}
can be different. To get the same system a

feedback law must be included.

From equations (6), it is straightforward to obtain the flat outputs. Consider y0 = z0 and y1 = z1
1 as

the first flat outputs. Then, z1
2 , ... , z1

s1+1, can be expressed in terms of y0, y1 and its derivatives, dividing
both sides by u0. The same happens for the remaining equation blocks. Therefore, the flat outputs are

y0 = z0,
y1 = z1

1 ,
...

ym = zm
1 ,

and the remaining variables are expressed as:

z j
2 = ż j

1/u0 = ẏj/ẏ0,

z j
3 = ż j

2/u0 = z j
3 (ẏ0, ÿ0, ẏj , ÿj)

...

z j
sj+1 = ż j

sj/u0 = z j
sj+1

(
ẏ0, ... , y

(sj)
0 , ẏj , ... , y

(sj)
j

)
.

Considering s0 = max{s1, ... , sm}, we need s0 + n variables to describe n variables. So that, the system
has to be prolonged as follows:

z0
1 = u0,

...

z0
s0 = u

(s0−1)
0 ,

v = ż0
s0 .

7Reports@SCM 1 (2014), 1–13; DOI:10.2436/20.2002.02.1.
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So far we have two well defined diffeomorphisms: one between the original state variables (x1, ... , xn)
and the new state variables (z1, ... , zn) and the second one between (z1, ... , zn) and the flat outputs and
their derivatives. So that, given a set of initial and final conditions for the original system, these conditions
are mapped into system (6) through the diffeomorphism. These conditions, plus additional conditions for
the extended variables, are transferred to initial and final conditions for the flat outputs by using the second
diffeomorphism.

Given 2 (sj + 1), j = 0, ... , m, initial and final conditions for each flat output and its derivatives, there
exists a unique 2sj + 1 degree polynomial that meets these conditions. Once the polynomial has been
defined, the controls uj(t), j = 0, ... , m, must be found from these equations:

w0 = y
(s0+1)
0 = v ,

wj = y
(sj+1)
j = d

sj+1

dt
sj+1 z j

1, j = 1, ... , m.

Control laws for the original system are found by mapping back the control laws trough the feedback
transformation.

4. Example

Consider the system corresponding to a vehicle with equal and expanding back wheels and equal front
wheels with a fixed radius l , that was studied in [1, 2]. The vehicle dynamics is described by ṙ

θ̇1
θ̇2

 =

 1
0

−(tanα)/l

 u1 +

 0
1

r/l

 u2 = f1u1 + f2u2, (7)

where θ1 and θ2 are, respectively, the variables defining the angular position of the front and rear wheels,
α is a constant corresponding to the angle between the horizontal and the line obtained joining the wheel
centers, and r is the radius of the back wheels that varies with time. A diagram of the system is plotted
in Fig. (1).

Figure 1: System diagram.

The codistribution defined as

I (0) = ∆⊥ = {ω ∈ Λ1 | fi yω = 0, ∀fi ∈ 4}
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has to be found. A possible solution is

ω = tanαdr − r dθ1 + l dθ2.

The goal is to put ω into the Goursat normal form. This one form fulfills ( dω)∧ω 6= 0 and ( dω)2∧ω = 0,
so rang(ω) = 1 and Pfaff theorem can be applied. First of all, a function f1 such that

dω ∧ ω ∧ df1 = 0

has to be found. Actually this is a degree four form in a three dimensional space. Hence, it vanishes
everywhere and any f1 function works out. For simplicity, we choose

f1(r , θ1, θ2) = r .

A second function f2 has to satisfy

ω ∧ df1 ∧ df2 = 0,

df1 ∧ df2 6= 0.

Note that this is a degree three form in a three dimensional space. A possible function could be

f2(r , θ1, θ2) = θ2l − θ1r ,

so that,

ω = df2 + g1 df1 = dz3 − z2 dz1.

The new variables expressed in terms of the original ones are

z1 = r ,

z2 = −θ1 − tanα,

z3 = θ2l − θ1r .

And the system expressed in the new variables is ż1
ż2
ż3

 =

 1
0
z2

 u1 +

 0
−1
0

 u2. (8)

Note that system (8) is not in the Goursat canonical form. As remarked before, a feedback law must
be applied in order to get a system like in equation (5). In this case, this feedback is

u1 := u1,

u2 := −u2.

Hence, system (8) becomes  ż1
ż2
ż3

 =

 1
0
z2

 u1 +

 0
1
0

 u2.

9Reports@SCM 1 (2014), 1–13; DOI:10.2436/20.2002.02.1.
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The flat outputs are easy to obtain from this canonical form,

y1 = z3,

y2 = z1,

so that

ẏ1 = ż3 = z2u1,

ẏ2 = ż1 = u1.

From here we extract

z2 =
ẏ1
ẏ2

.

The variables z = (z1, z2, z3) are expressed in terms of y = (y1, ẏ1, y2, ẏ2).

In order to define a diffeomorphism between z = (z1, z2, z3) and y = (y1, ẏ1, y2, ẏ2), the system has to
be prolonged as follows

z4 = u1,

and two new controls,
v1 = u̇1, v2 = u2,

are defined. Therefore, the system becomes 
ż1 = z4
ż2 = v2
ż3 = z2z4
ż4 = v1.

The diffeomorphism linking the two sets of variables (z = (z1, z2, z3, z4) and y = (y1, ẏ1, y2, ẏ2)) is

y1 = z3,

y2 = z1,

ẏ1 = z2z4,

ẏ2 = z4.

In the flat variables, the system reduces to a pair of second-order integrators{
ÿ2 = w1

ÿ1 = w2.

The feedback law relating the control laws is:{
v1 = w1

v2 = (w2 − z2w1)/z4.

Each flat output has to pass through four conditions (two initial conditions and two final conditions), so
there exist two unique third degree polynomials such that

P3(t) = y1(t),

Q3(t) = y2(t).

http://reportsascm.iec.cat10
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5. Simulations

A set of initial and final conditions have been chosen as follows

x(0) = (r(0), θ1(0), θ2(0)) = (1,π,π/2) ,

x(1) = (r(1), θ1(1), θ2(1)) = (2, 0, 0) ,

z(0) = (z1(0), z2(0), z3(0)) = (1,−π − 1,π/2) ,

z(1) = (z1(1), z2(1), z3(1)) = (2,−1, 0) .

Adding z4(0) = 1 and z4(1) = 3, through the diffeomorphism, we obtain the following conditions for the
flat outputs

y(0) = (y1(0), ẏ1(0), y2(0), ẏ2(0)) = (−π/2,−π − 1, 1, 1) ,

y(1) = (y1(1), ẏ1(1), y2(1), ẏ2(1)) = (0,−3, 2, 3) .

The polynomials meeting these conditions are

P3(t) = (−2π − 4)t3 + (5 + 7π/2)t2 + (−π − 1)t − π/2,

Q3(t) = 2t3 − 2t2 + t + 1.

Once the polynomials have been found, the inputs are obtained by double differentiation:

w2 =
d2

dt2
y1 =

d2

dt2
P3(t),

w1 =
d2

dt2
y2 =

d2

dt2
Q3(t).

By applying inverse feedback, the controls v1(t) and v2(t) are found. Since u2(t) = v2(t) and u̇1(t) = v1(t),
the original controls can be obtained by integration:

u1(t) = 1− 4t + 6t2,

u2(t) =
3(−2 + 4t + 4t2 − π + 6t2π)

(1− 4t + 6t2)2
.

Replacing the controls obtained in the original system, trajectories for the system variables are found
through numerical integration. These trajectories are depicted in Fig.(2):

Figure 2: Behavior of system variables.

11Reports@SCM 1 (2014), 1–13; DOI:10.2436/20.2002.02.1.
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In order to circumvent errors in the initial conditions, a linear controller is added to the linear system
corresponding to the flat output space. With the addition of this controller, errors in the final conditions
are minimized.

The original initial and final conditions are

(r(0), θ1(0), θ2(0)) = (1,π,π/2) ,

(r(1), θ1(1), θ2(1)) = (2, 0, 0) ,

and the perturbed initial conditions are

(r(0), θ1(0), θ2(0)) = (1/2, 7/2, 2) .

In the next figure, we can observe how the modified trajectories converge quickly to the desired trajectory,
which is the trajectory obtained by the unperturbed initial conditions plotted in Fig. (3):

Figure 3: Trajectories of the system variables with disturbance in the initial conditions.

6. Conclusions

An algorithm to find flat outputs has been explained. This algorithm consists in finding the equivalent
Pfaffian system to a control system and transforming this Pfaffian system into the Goursat normal form.
This Goursat normal form, when it is written again in the state space form, is very useful in order to find
the flat outputs of the system if a feedback law is included in order to simplify the equations.

As an example, point to point trajectories for a car with expanding wheels are simulated. The control
laws have been obtained by transforming the system into its equivalent trivial linear system in the flat
variables (chains of integrators), and designing the control laws by interpolation of the initial and final
conditions. The control laws for the nonlinear system are obtained mapping back the diffeomorphisms and
the feedback laws.

Future works using Goursat canonical forms include application of this algorithm to more complex
control systems, as well as possible reinterpretation of existing results in the literature that have been
obtained in the framework of vector fields.
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