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Resum Abstract

Les guitarres tradicionals tenen els trasts
paral̈ lels. El teorema de Tales justifica la seva

bona entonació des d’una perspectiva
geomètrica gràcies al sistema de rectes

paral̈ leles i transversals compost pels trasts i
les cordes. Però ja fa uns anys que les guitarres
sense trasts paral̈ lels s’han fet populars. Sense

paral̈ lelisme de cordes ni de trasts, quina
causa justifica la seva bona entonació? La

resposta és un teorema geomètric sobre la
conservació de la proporcionalitat malgrat

l’absència de paral̈ lelismes. Tot plegat té
implicacions rellevants per a la recerca

matemàtica en un àmbit laboral i artesà com
és el de la lutieria i per a l’educació, fent de la
guitarra un recurs d’aprenentatge matemàtic

a través del qual parla la geometria.

Traditional guitars are built with parallel frets.
From a geometric perspective, Thales’ theorem
explains their intonation thanks to the parallel
and transverse straight lines composed by the
frets and strings. But since several years ago,
guitars without parallel frets have become quite
popular.Without parallelismof strings or frets,
how is their correct intonation explained? The
answer is a geometric theorem concerning the
conservation of proportionality despite the lack
of any parallelism. All this has important
implications for mathematical research in a
labour and artisanal field such as lutherie and
for education, making the guitar a
mathematical learning resource throughwhich
geometry speaks.

D’uns anys ençà, les guitarres amb trasts no paral̈ lels s’han fet populars. Són les anomenades
guitarres d’escala múltiple o de trasts en ventall. Es diuen així perquè els trasts semblen les
varetes d’un ventall, tot i que, a diferència del que passa en aquest objecte, les prolonga-
cions dels trasts d’aquestes guitarres no convergeixen en un punt. Els trasts de les guitarres
d’escala única, que són paral̈ lels, sí que convergeixen en un punt: el de l’infinit.

Les guitarres d’escala múltiple es diuen així perquè les longituds vibrants de les cordes són
totes diferents. Això no vol dir que les longituds vibrants de les cordes en guitarres d’escala
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única siguin idèntiques, sinó que la longitud d’escala, és a dir, la longitud vibrant de les cor-
des, ve determinada per la distància entre el trast zero (celleta) i el trast infinit (celleta del
pont) (figura 1). Com que en les guitarres d’escala única ambdues celletes són paral̈ leles, la
distància que les separa és l’escala de la guitarra. Les longituds vibrants de les sis cordes són
lleugerament diferents, ja que aquestes sí que s’obren en ventall, atesa la major separació
al pont que a la celleta. La retícula que formen les cordes i els trasts d’una guitarra d’escala
única és trapezoidal. En canvi, la retícula de les guitarres d’escala múltiple no és trapezoidal,
sinó quadrilàtera (no trapezoidal). Les anomenarem retícules sonores.

Des d’una perspectiva geomètrica, veurem que el teorema de Tales sobre la proporcionalitat
de segments justifica la bona entonació de les guitarres amb trasts paral̈ lels, per allò que el
paral̈ lelisme ajuda a conservar les proporcions de les longituds. Però a les guitarres sense
trasts paral̈ lels, sense paral̈ lelisme de cordes ni de trasts, quin teorema pot justificar la seva
bona entonació? Atès que la seva retícula no conté cap parell de segments paral̈ lels, no es
pot aplicar el teorema de Tales. I, malgrat tot, la realitat és que aquestes guitarres entonen
correctament. Hi ha d’haver una causa matemàtica del fenomen. Un fenomen real inspira la
cerca d’un fenomen matemàtic.

Una guitarra entona bé si la intersecció de cada trast amb totes les cordes determina la ma-
teixa fracció vibrant de les cordes que intercepta. S’entreveu que, gràcies al sistema de seg-
ments paral̈ lels (els trasts) i transversals (les cordes), el teorema de Tales justificarà la con-
servació de les proporcions. El que no és tan clar d’entrada és com es poden justificar les
proporcionalitats en un sistema absent de qualsevol paral̈ lelisme. Però, abans d’encetar la
qüestió, convé familiaritzar-se amb les parts principals d’una guitarra (figura 1).

Figura 1. Parts principals d’una guitarra construïda pel lutier

AntonioManjónMartín a Sant Adrià de Besòs (Barcelona).

Els trasts no són equidistants

Els orígens de l’escala musical es troben a la corda tensada que Pitàgores va estudiar, el so de
la qual canviava segons la seva longitud. Més curta, so més agut; més llarga, so més greu. El
savi grec observà també que algunes fraccions de la corda produïen sons més agradables a
l’oïda i més afins amb el de la corda sencera, sobretot les corresponents a la meitat, el quart i
el terç (Boyer, 1986). Així naixeren les anomenades consonàncies sonores. Si s’escurça la cor-
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da a la meitat, sona l’octava (8a); si s’escurça una quarta part, sona la quarta (4a); si es redueix
un terç, sona la quinta (5a). El que no va determinar Pitàgores foren les causes físiques del
fenomen, les quals es coneixerien mil̈ lennis després amb l’estudi de les freqüències sonores.

El to d’un so es quantifica amb cicles per segon, fet que en una corda vibrant equival a la seva
freqüència de vibració. En reduir la longitud a la meitat, la freqüència es duplica; en reduir-la
a 2{3, la freqüència es multiplica per 3{2. En reduir la longitud vibrant a la fracció a{b de
la longitud, la freqüència de vibració es multiplica per b{a.

Durant els segles XVII i XVIII es concretaren les bases de les freqüències que definirien el sis-
tema musical occidental conegut com a sistema temperat. Fou un procés complex que va
concloure amb la divisió de l’octava en dotze intervals equidistants pel que fa a llurs freqüèn-
cies de vibració. Cadascun d’aquests dotze intervals s’anomena semitò. Si r és l’augment de
freqüència d’una nota al semitò immediat superior, fan falta dotze ascensos, és a dir, multi-
plicar dotze vegades consecutives per r la freqüència de partida, fins a arribar a l’octava, la
nota corresponent a la duplicació de la freqüència original. Això vol dir que pujar un semitò
equival a multiplicar la freqüència per 1.059:

r ¨ r ¨ cdots12 vegades ¨ ¨ ¨ ¨ r “ r12 “ 2 ùñ r “ 12
?
2 « 1.059

I dotze pujades successives de semitò equivalen a una pujada directa d’una octava, la fre-
qüència duplicada:
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L’escala única més corrent avui dia en les guitarres és la de 650 mm. Però ja s’ha dit que les
cordes no es disposen paral̈ leles, sinó que van separant-se regularment, com un ventall, des
de la celleta fins al pont. A la celleta la separació acostuma a ser de 8 mm i al pont, d’uns
11 mm. Com a conseqüència, les parts vibrants de les cordes no tenen exactament les ma-
teixes longituds. Les longituds vibrants de les cordes primera i sisena són iguals. També són
iguals, però un xic més curtes, les de la segona i la cinquena. També són iguals, però encara
una mica més curtes, les de la tercera i la quarta.

A la taula 1 es mostren les posicions dels trasts paral̈ lels d’una guitarra quan adaptem les
freqüències a una escala de 650 mm. No són equidistants i les separacions es van reduint a
mesura que s’apropen al pont, la freqüència sonora augmenta i el so es fa més agut.
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Taula 1. Posicions dels dotze primers trasts paral̈¨̈lels d’una guitarra (m: menor, M: major, +: augmentada).

Escala de
650mm

Relació Freqüència Interval
musical

Retall de longitud vibrant
de corda (mm)

Separació entre trasts
consecutius

0 2^(0/12) 1.000 Uníson 0.000 --

1 2^(1/12) 1.059 2a m 36.482 36.482

2 2^(2/12) 1.122 2a M 70.916 34.434

3 2^(3/12) 1.189 3a m 103.417 32.501

4 2^(4/12) 1.260 3a M 134.095 30.677

5 2^(5/12) 1.335 4a 163.050 28.956

6 2^(6/12) 1.414 4a ` 190.381 27.330

7 2^(7/12) 1.498 5a 216.177 25.796

8 2^(8/12) 1.587 6a m 240.526 24.349

9 2^(9/12) 1.682 6a M 263.508 22.982

10 2^(10/12) 1.782 7a m 285.200 21.692

11 2^(11/12) 1.888 7a M 305.674 20.475

12 2^(12/12) 2.000 8a 325.000 19.326

Teorema de l’entonació per a guitarres amb trasts paral̈¨̈lels
La guitarra clàssica i les seves cosines acústiques i elèctriques tradicionals es construeixen
amb trasts paral̈ lels i separats tal com s’exposa en la taula 1. També comparteixen l’equidis-
tància de cordes a la celleta i al pont. Totes aquestes mides són un xic inferiors en les guitarres
amb cordes d’acer que en les que tenen cordes de niló. Una corda al trast VII, per exemple,
redueix la seva longitud vibrant als 2{3. Qualsevol altra corda en el mateix trast ha de reduir
la seva longitud vibrant als seus 2{3. Com s’assegura això?

Ja s’ha dit que els trasts i les cordes d’una guitarra, des de la celleta fins a la celleta del pont,
componen una retícula trapezoidal que s’anomena retícula sonora. Gràcies al paral̈ lelisme
entre ambdues celletes i els trasts, les cel̈ les d’aquesta retícula també són totes trapezoidals
(figura 2).

Figura 2. Trapezi sonor de la guitarra.

A més d’això, l’equidistància de les cordes en passar per la celleta i per la celleta del pont fa
que interceptin els trasts en cinc parts iguals. A la taula 2 es mostren les seccions correspo-
nents en una guitarra hipotètica de n cordes.
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Taula 2. Seccions provocades en els trasts per l’equidistància de les cordes.

Corda Secció creada per la corda

1a 0{pn ´ 1q
2a 1{pn ´ 1q
3a 2{pn ´ 1q
¨ ¨ ¨ ¨ ¨ ¨

enèsima pn ´ 1q{pn ´ 1q

Els valors de n són discrets i naturals. Però si tenim en compte que els trasts no són equidis-
tants i que, per tant, les seccions que a les cordes provoquen les seves intercepcions no es
corresponen amb valors enters, el teorema que necessitem es pot plantejar amb valors reals:

Teorema 1 (d’entonació de les guitarres amb trasts paral̈ lels). En un trapezi ABCD de costats
paral̈ lels AB i CD, sigui P sobre AC tal que AC{AP “ k. Aleshores, la paral̈ lela als costats AB
i CD traçada per P determina un punt Q sobre BD que el divideix en la mateixa proporció:
BD{BQ “ k (figura 3).

Figura 3. Teorema d’entonació amb trasts paral̈¨̈lels.

AB i CD vindrien a ser la celleta i la celleta del pont de la guitarra, i PQ, qualsevol trast in-
termedi entre elles. AC i BD representen qualsevol parell de cordes. Aquest teorema evoca
el conegut com a teorema de la paral̈ lela mitjana, la proposició 2 del llibre VI dels Elements
(Euclides, 1991):

Teorema 2 (de la paral̈ lela mitjana). El segment que uneix els punts mitjans de dos costats
d’un triangle és paral̈ lel al tercer costat i la seva longitud és la meitat d’aquest.

El teorema 1 és una generalització del recíproc d’aquest teorema 2. No fa referència als punts
mitjans, sinó als punts que divideixen els costats en qualsevol raó k. Tampoc no es limita al
triangle, sinó al trapezi. Comencem veient la generalització del recíproc del teorema 2 (de la
paral̈ lela mitjana) al triangle:

Teorema 3 (generalització del recíproc de la paral̈ lelamitjana). En un triangle ABC, sigui P sobre
AC tal que AC{AP “ k. Aleshores, el punt Q que la paral̈ lela r a BC traçada per P determina
sobre AB, el divideix en la mateixa proporció: AB{AQ “ k (figura 4).
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Figura 4. Generalització del teorema de la paral̈¨̈lela mitjana a una secció k qualsevol.

Si PQ i BC són paral̈ lels, APQ i ABC són triangles semblants. Pel teorema de Tales, els seus
costats són proporcionals i la proporció entre AC i AP és la mateixa que la que hi ha entre AQ
i AB. Per tant, AB{AN “ k. Demostrat en el triangle, demostrarem ara la generalització en un
paral̈ lelogram.

Teorema 4 (generalització del teorema 3al paral̈ lelogram). En un paral̈ lelogram ABCD, prenem
un punt P sobre AC tal que AC{AP “ k. Aleshores, el punt Q que la paral̈ lela a BC traçada per
P determina sobre BD, el divideix en la mateixa proporció: BD{BQ “ r (figura 5).

Figura 5. Generalització al paral̈¨̈lelogram.

Si tracem la diagonal AD del paral̈ lelogram, obtenim P1, el punt de tall de PQ amb AD (figu-
ra 6).

Figura 6. La diagonal d’un paral̈¨̈lelogram el divideix en dos triangles iguals.

Si apliquem el teorema 3 al triangle ACD, tenim que P1 divideix AD en la mateixa proporció
que P divideix AC, és a dir: AD{AP1 “ k. Si repliquem el procés al triangle DAB, també Q
divideix DB en la mateixa proporció que P1 divideix DA : BD{AP1 “ BD{BQ “ k.
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Per demostrar el teorema 1, la generalització d’aquest últim teorema al trapezi, sigui ABCD
un trapezi en el qual P divideix AC en una raó k. Veurem que la paral̈ lela a CD traçada per P
divideix l’altre costat BD de la mateixa manera (figura 7):

Figura 7. Generalització a qualsevol fracció del recíproc de la paral̈¨̈lela mitjana.

Si tracem per A una paral̈ lela a BD, obtenim dos punts de tall: D1 sobre CD i P1 sobre PQ (figura
8). D’aquesta manera, el trapezi queda descompost en un triangleACD1 i en un paral̈ lelogram
ABDD1.

Figura 8. Trapezi dividit en un triangle i un paral̈¨̈lelogram.

Si apliquem el teorema 3 al triangle ACD1, obtenim un punt P1 que divideix AD1 en la mateixa
proporció que P divideix AC. Si apliquem el teorema 4 al paral̈ lelogram ABDD1, tenim que Q
divideix BD en la mateixa proporció que P1 divideix AD1 i que és, en conseqüència, la mateixa
en la qual P dividia AC. Així queda demostrat el teorema 1 sobre l’entonació en guitarres amb
trasts paral̈ lels i, per extensió, en instruments de corda amb trasts d’aquest tipus. Tal com
intuíem, el teorema de proporcionalitat de Tales n’és el rerefons.

Val a dir que el teorema no obliga a observar l’equidistància de cordes a la celleta i a la
celleta del pont. Si ambdues són paral̈ leles i els trasts són paral̈ lels, qualsevol trast i qualsevol
parell de cordes formarà sempre amb la celleta del pont un trapezi (figura 9) que permetrà
l’aplicació del teorema 1, i l’instrument entonarà correctament.

Figura 9. L’equidistància de cordes no és necessària.
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El teorema 1 no és altre que el recíproc del teorema del punt mitjà del trapezi referit per De
Villiers (2013) i que representa una generalització del teorema de la bimediana:

Teorema 4 (bimediana). Siguin MN i PQ les medianes dels costats oposats d’un trapezi ABCD
en el qual els costats AB i CD són paral̈ lels. Aleshores, PQ i MN es tallen pels seus punts mit-
jans.

Atès que en el teorema 1 les divisions dels costats oposats del trapezi van més enllà dels seus
punts mitjans, aquesta és una generalització del teorema de la bimediana.

Teorema d’entonació per a guitarres sense trasts paral̈¨̈lels
Avui dia es construeixen tot tipus de guitarres d’escala múltiple (figura 10): clàssiques, acús-
tiques, elèctriques... Els motius principals són dos: d’una banda, s’aconsegueix augmentar el
nombre de cordes sense que les més greus hagin de ser massa gruixudes per tal de mantenir
una tensió i un so equilibrat amb els de les restants, és per això que la majoria de guitarres
d’escala múltiple acostumen a tenir més de sis cordes; d’altra banda, els trasts no paral̈ lels
permeten un accés i una posició del canell de la mà esquerra més natural en els primers i
últims trasts del diapasó.

Figura 10. Guitarra de nou cordes d’escala múltiple construïda per Daniel Zucali (Haag, Àustria).

Com es mostra a la figura 10, la retícula sonora limitada per la celleta, la celleta del pont i
les cordes primera i sisena ja no és trapezoidal, sinó que només té forma de quadrilàter. Les
seves cel̈ les tampoc ja no són trapezoidals. Sense cap paral̈ lelisme, els teoremes emprats fins
ara no són aplicables.

La característica comuna entre aquestes guitarres i les d’escala única és l’equidistància de les
cordes. Això fa que les cordes divideixin dos costats oposats del quadrilàter en parts iguals. I
atès que també ara cadascun dels trasts ha d’interceptar totes les cordes en punts correspo-
nents a la mateixa proporció, el teorema que justifiqui la bona entonació de l’instrument ve
a ser la generalització última del teorema de la paral̈ lela mitjana, tant pel que fa al polígon
d’aplicació (quadrilàter) com pel que fa a la ràtio de les seccions dels costats (qualssevol).
L’anomenarem teorema de les divisòries.
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Teorema 5 (de les divisòries d’un quadrilàter). En un quadrilàter ABCD es prenen quatre punts
M, N, P i Q sobre cadascun dels costats, de manera que AC{AP “ BD{BQ “ r i AB{AM “
CD{CN “ s (figura 11). De PQ i MN en direm les divisòries del quadrilàter. Aleshores, el punt O
d’intersecció de les dues divisòries verifica que MN{MO “ r i PQ{PO “ s.

Figura 11. Teorema de les divisòries.

No hi ha cap parell de segments paral̈ lels a la figura 11, però els podem crear per mirar
d’aplicar la recomanació de Polya (1988): adaptar la resolució d’un problema senzill a un de
més complex. Si tracem paral̈ leles a les divisòries PQ i MN pels seus punts de tall amb els
costats del quadrilàter i pels quatre vèrtexs d’aquest, aconseguirem superposar una retícula
de paral̈ lelograms damunt del quadrilàter (figura 12).

Figura 12. Retícula de paral̈¨̈lelograms generada per les divisòries PQ iMN.

Si apliquem el teorema 4 al trapezi AM2N2C, tenim que M2N2{M2O “ AC{AP “ r (figura 13).
El mateix teorema aplicat al trapezi M1BDN1 permet assegurar que M1N1{M1O “ BD{BQ “ r.

Figura 13. Les divisions d’AC i BD es propaguen aM2N2 iM1N1.
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Fixem-nos ara en els triangles ABA1 i CDD1 (figura 14). AMM2 i ABA1 són triangles sem-
blants perquè tenen els costats paral̈ lels i perquè la proporció entre els seus costats, la que
hi ha entre AM i AB, és s. Pel teorema de Tales, BA1 “ s ¨ MM2. Però BA1 “ M1M2 i, per tant,
M1M2 “ s ¨ MM2, De manera anàloga, en el triangle CDD1 trobem que N1N2 “ s ¨ NN2.

Figura 14. Els triangles ABA1 i CDD2.

En benefici de la claredat d’exposició, direm que x “ MM2, y “ NN2 i z “ M2O, i escriurem
els segments M1N1 i BD1 en aquests termes:

M1N1 “ M1M2 ` M2N2 ` N2N1 “ s ¨ MM2 ` r ¨ M2O ` s ¨ NN2 “ s ¨ x ` r ¨ z ` s ¨ y
BD1 “ r ¨ M1O “ r ¨ pM1M2 ` M2Oq “ r ¨ ps ¨ MM2 ` M2Oq “ r ¨ ps ¨ x ` zq

Atès que M1N1 “ BD1:

sx ` rz ` sy “ r ¨ psx ` zq
sx ` rz ` sy “ rsx ` rz

Això permet descompondre MN i obtenir la conclusió:

MN “ x ` rz ` y “ rz ` rx “ r ¨ px ` zq “ r ¨ MO

Si apliquem el mateix procediment a la divisòria PQ, arribarem a un resultat anàleg:
PQ “ s ¨ OP. Com es volia demostrar, el punt O divideix cada divisòria en les mateixes raons
en les quals cada divisòria divideix els costats oposats del quadrilàter.

El teorema és fals si les divisòries no seccionen els costats oposats que connecten en la matei-
xa raó, com es posa de manifest a la figura 15. El trast XII divideix per la meitat les cordes c1 i c3.
Però no fa el mateix amb la corda c2: x1 ą x2. Això vol dir que si les guitarres d’escala múltiple
no es fessin amb equidistància de cordes en la celleta i en la celleta del pont, l’entonació
esdevindria impossible.
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Figura 15. Sense l’equidistància de cordes les guitarres d’escala múltiple no entornarien.

Matemàtiques, treball artesà i aprenentatge

A la xarxa Internet hom troba moltes webs on lutiers d’arreu expliquen com construeixen
guitarres d’escala múltiple amb trasts no paral̈ lels. Hi ha guitarres en les quals el trast per-
pendicular a la mediatriu del diapasó és el VII; en d’altres, en canvi, és el XII. Segons escriuen
els lutiers, això depèn tant del guitarrista com de les escales (longituds vibrants de les cordes)
i del nombre de cordes que tindrà la guitarra. La recerca sobre la justificació geomètrica de la
bona entonació no va produir cap resultat.

Els orígens d’aquestes guitarres són del segle XVI, quan a Europa es va construir un instrument
anomenat bandora que no tenia els trasts paral̈ lels. Tres segles després, Novak (1988) va
patentar als Estats Units una guitarra d’escala múltiple. En el document de registre explica
com funciona, però tampoc no ofereix cap justificació de la seva entonació correcta.

Aquest treball s’ha redactat pensant en diapasons plans. Les guitarres acústiques i elèctriques
es fan amb diapasons corbats, però les cordes es disposen sobre ells observant l’equidistància
pròpia dels diapasons plans. Per tant, tots els teoremes desenvolupats són aplicables també
a aquest tipus de diapasons. La situació es pot il̈ lustrar imprimint el diapasó d’una guitarra i
després enrotllar-lo en forma de tub. El diapasó esdevé una superfície cilíndrica amb trasts
circulars, mentre que les cordes continuen essent rectilínies.

De les diverses relacions entre les matemàtiques i l’entorn, es destaca aquí que un fenomen
de l’entorn inspira el desenvolupament de coneixement matemàtic. Es tracta d’un tipus de
relació ja assenyalada en un estudi sobre l’ús de les matemàtiques en l’àmbit laboral (Albertí,
2009 i 2022). En aquesta ocasió, el producte d’un treball artesà com el de la lutieria ha inspirat
el teorema de les divisòries amb el qual es pot justificar geomètricament la bona entonació
de les guitarres, amb o sense trasts paral̈ lels. I, per extensió, la dels instruments de corda
amb trasts. Això invita a pensar en la possibilitat de trobar més qüestions rellevants per a les
matemàtiques en aquesta activitat artesana.

Pensem, per exemple, en el fet que l’equidistància de cordes no sigui necessària en les guitar-
res d’escala única (amb trasts paral̈ lels), però esdevingui essencial en les d’escala múltiple
(amb trasts no paral̈ lels). Un cop situades la primera i la sisena cordes, les instruccions d’un
lutier de guitarres amb cordes d’acer, per posar les restants són: «[. . . ] espaiar les quatre
cordes interiors de manera que equidistin l’una de l’altra. L’espai equidistant s’hauria de de-
terminar entre (sic) les cordes, i no des dels seus centres» (Benedetto, 1994: 187). Aquest
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«entre» destacat pel lutier vol dir que les equidistàncies s’han de prendre des dels perfils de
les cordes, i no des dels seus centres. La diferència no és gaire important en guitarres amb
cordes de niló perquè tots els seus gruixos són força semblants, ja que només oscil̈ len entre
0,7 mm i 1,1 mm. En canvi, en les guitarres amb cordes d’acer, la diferència de gruix entre la
primera corda (0,28 mm) i la sisena (1,32 mm) supera el mil̈ límetre. Si amb cordes semblants
l’equidistància es pren des dels centres, la separació entre els perfils de la cinquena i la sisena
cordes podria superar en més d’1 mm la separació entre els perfils de la primera i la segona.
Massa diferència per no afectar l’execució. Però no calia que Benedetto es preocupés per
l’entonació, ja que les guitarres de les quals parlava tenien els trasts paral̈ lels i, com s’ha
demostrat, l’equidistància no és essencial per preservar l’entonació. I, això, tenint en compte
que en els models geomètrics utilitzats hem pres una corda com un segment sense gruix.
Les instruccions de Benedetto potser no són, doncs, les més apropiades per a aquest tipus
d’instruments.

Això planteja una qüestió essencial sobre la lutieria: ¿l’equidistància de les cordes a la ce-
lleta i a la celleta del pont en les guitarres d’escala múltiple és decisió del lutier per preser-
var l’entonació de l’instrument o és una decisió inconscient que trasllada automàticament a
aquestes guitarres la manera amb què es construeixen les guitarres d’escala única? Valdria
esbrinar-ho directament dels professionals de la lutieria. En benefici seu i en benefici de les
matemàtiques, seria bo fer una interpretació matemàtica situada d’aquest ofici basada en
les tres fases en les quals es pot dividir una activitat artesana: l’obra acabada, l’obra en curs
i l’obra en projecte (Albertí, 2007). Els teoremes desenvolupats interpreten matemàticament
un aspecte de l’obra acabada i n’estableixen les causes des d’una perspectiva matemàtica.
Analitzar l’obra en curs i l’obra projectada passaria per veure què fan els lutiers i què responen
quan se’ls interpel̈ la sobre el que volen fer.

A més, la lutieria no hauria d’ignorar les conseqüències que determinats fets i, possiblement,
determinats costums poden tenir en la seva feina. En aquest sentit, la col̈ laboració entre
matemàtiques i artesania enriquiria ambdues activitats. De manera natural estem parlant
d’aprenentatge. I les implicacions per a l’aprenentatge acadèmic es poden adreçar a dues
qüestions principals:

a) D’una banda, la modelització matemàtica de fenòmens de l’entorn. Els entorns social,
cultural i natural es componen de multitud de fenòmens que massa sovint, tot i ser
extraordinàriament quotidians, ens passen desapercebuts. És, de fet, la seva quotidia-
nitat la que ens impedeix mirar-nos-els des d’una perspectiva diferent. La guitarra és un
dels instruments musicals més populars. Però rarament parem esment en el seu poten-
cial com a recurs d’aprenentatge matemàtic. No hi ha res més important en qualsevol
instrument musical que l’entonació correcta. Tot plegat fa de l’entonació un tema per
tractar matemàticament a l’educació secundària. El cas de les guitarres d’escala única
és força abordable atesa la seva relació amb el teorema de Tales. Alhora, n’eixampla
l’àmbit tradicional d’aplicació. Ara sabem que el teorema de Tales també serveix per
explicar l’eficàcia de les retícules sonores de les guitarres. El cas de les guitarres d’escala
múltiple necessita un coneixement més profund dels Elementsd’Euclides que rarament
es pot tractar a l’educació secundària.

b) D’altra banda, la demostració matemàtica. La modelització digital permet abordar la
qüestió de l’entonació de les guitarres d’escala múltiple de manera més directa, sense



74 noubiaix 49

haver d’aprofundir gaire en la geometria euclidiana. Si duem a terme una dinamitza-
ció digital amb GeoGebra, podem confirmar el teorema de les divisòries. Sabrem que
el teorema és cert. Segons Carrillo (2012), l’haurem «demostrat» (sic). Però GeoGebra
rarament demostra. GeoGebra confirma o refusa. I si confirma la certesa sense que
acabem d’entendre-la, es farà clar que n’haurem de continuar buscant les causes. Això
pot implicar créixer més culturalment. És a dir, aprendre per entendre. La comprensió
definitiva no arribarà mentre no demostrem el teorema amb la metodologia pròpia de
l’àmbit en el qual fou plantejat: el de la geometria euclidiana.
Tot s’ha desenvolupat en el pla bidimensional, però el so es produeix en un espai tri-
dimensional on s’haurien de considerar més variables. Els materials de les cordes, els
seus diàmetres, les altures sobre els trasts, tot això afecta lleugerament, però afecta,
l’entonació. La realitat del lutier és que tot instrument es dissenya sobre papers i plan-
tilles planes, on els trasts se situen al diapasó respectant les distàncies descrites. Un
cop acabat l’instrument, la realitat entra en joc i s’han de fer ajustaments per restablir
la bona entonació planejada sobre el paper. Sovint cal desplaçar o esmolar un xic la
celleta del pont (unes dècimes de mm) o usar cordes lleugerament més primes o més
gruixudes. En fer-ho, el lutier torna a la geometria de l’instrument allò que la realitat li
havia tret.
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