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Resum | Abstract

Les guitarres tradicionals tenen els trasts | Traditional guitars are built with parallel frets.
parallels. El teorema de Tales justificala seva | From a geometric perspective, Thales’ theorem
bona entonacié des d'una perspectiva | explains their intonation thanks to the parallel
geometrica gracies al sistema de rectes | and transverse straight lines composed by the
paralleles i transversals compost pels trastsi | frets and strings. But since several years ago,
les cordes. Pero ja fa uns anys que les guitarres | guitars without parallel frets have become quite
sense trasts parallels s’han fet populars. Sense | popular. Without parallelism of strings or frets,
parallelisme de cordes ni de trasts, quina | how is their correct intonation explained? The
causa justifica la seva bona entonacié? La | answer is a geometric theorem concerning the
resposta és un teorema geométric sobre la | conservation of proportionality despite the lack
conservacio de la proporcionalitat malgrat | of any parallelism. All this has important
I'abséncia de parallelismes. Tot plegat té | implications for mathematical research in a
implicacions rellevants per a la recerca | labour and artisanal field such as lutherie and
matematica en un ambit laboral i artesa com | foreducation, making the guitar a
és el de lalutieriai per al'educacié, fentdela | mathematical learning resource through which
guitarra un recurs d'aprenentatge matematic | geometry speaks.
a través del qual parla la geometria.

D’uns anys enca, les guitarres amb trasts no parallels s’han fet populars. Sén les anomenades
guitarres d'escala multiple o de trasts en ventall. Es diuen aixi perque els trasts semblen les
varetes d’'un ventall, tot i que, a diferencia del que passa en aquest objecte, les prolonga-
cions dels trasts d’aquestes guitarres no convergeixen en un punt. Els trasts de les guitarres
d’escala Unica, que son paral-lels, si que convergeixen en un punt: el de l'infinit.

Les guitarres d’escala multiple es diuen aixi perqué les longituds vibrants de les cordes sén
totes diferents. Aixo no vol dir que les longituds vibrants de les cordes en guitarres d'escala
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Unica siguin identiques, sind que la longitud d'escala, és a dir, la longitud vibrant de les cor-
des, ve determinada per la distancia entre el trast zero (celleta) i el trast infinit (celleta del
pont) (figura 1). Com que en les guitarres d’escala Unica ambdues celletes son paral-eles, la
distancia que les separa és I'escala de la guitarra. Les longituds vibrants de les sis cordes sén
lleugerament diferents, ja que aquestes si que s'obren en ventall, atesa la major separacio
al pont que a la celleta. La reticula que formen les cordes i els trasts d’una guitarra d'escala
Unica és trapezoidal. En canvi, la reticula de les guitarres d’escala multiple no és trapezoidal,
sin6 quadrilatera (no trapezoidal). Les anomenarem reticules sonores.

Des d’una perspectiva geometrica, veurem que el teorema de Tales sobre la proporcionalitat
de segments justifica la bona entonacié de les guitarres amb trasts parallels, per allo que el
parallelisme ajuda a conservar les proporcions de les longituds. Perd a les guitarres sense
trasts paral-lels, sense parallelisme de cordes ni de trasts, quin teorema pot justificar la seva
bona entonacié? Atés que la seva reticula no conté cap parell de segments parallels, no es
pot aplicar el teorema de Tales. |, malgrat tot, la realitat és que aquestes guitarres entonen
correctament. Hi ha d’haver una causa matematica del fenomen. Un fenomen real inspira la
cerca d'un fenomen matematic.

Una guitarra entona bé si la interseccié de cada trast amb totes les cordes determina la ma-
teixa fraccio vibrant de les cordes que intercepta. S'entreveu que, gracies al sistema de seg-
ments parallels (els trasts) i transversals (les cordes), el teorema de Tales justificara la con-
servacié de les proporcions. El que no és tan clar d’entrada és com es poden justificar les
proporcionalitats en un sistema absent de qualsevol parallelisme. Pero, abans d'encetar la
glestio, convé familiaritzar-se amb les parts principals d'una guitarra (figura 1).

Celleta
Diapaso

Escala

Figura 1. Parts principals d’una guitarra construida pel lutier
Antonio Manjon Martin a Sant Adria de Besos (Barcelona).

Els trasts no sén equidistants

Els origens de I'escala musical es troben a la corda tensada que Pitagores va estudiar, el so de
la qual canviava segons la seva longitud. Més curta, so més agut; més llarga, so més greu. El
savi grec observa també que algunes fraccions de la corda produien sons més agradables a
I'oida i més afins amb el de la corda sencera, sobretot les corresponents a la meitat, el quart i
el ter¢ (Boyer, 1986). Aixi naixeren les anomenades consonancies sonores. Si s’escurca la cor-



64+ noubiaix 49

da a la meitat, sona I'octava (8a); si s'escurca una quarta part, sona la quarta (4a); si es redueix
un terg, sona la quinta (5a). El que no va determinar Pitagores foren les causes fisiques del
fenomen, les quals es coneixerien millennis després amb I'estudi de les freqliéncies sonores.

El to d'un so es quantifica amb cicles per segon, fet que en una corda vibrant equival a la seva
frequencia de vibracié. En reduir la longitud a la meitat, la freqiiéncia es duplica; en reduir-la
a 2/3, la frequiéncia es multiplica per 3/2. En reduir la longitud vibrant a la fraccié a/b de
la longitud, la freqliencia de vibracié es multiplica per b/a.

Durant els segles xvil i xvill es concretaren les bases de les freqiiéncies que definirien el sis-
tema musical occidental conegut com a sistema temperat. Fou un procés complex que va
concloure amb la divisié de I'octava en dotze intervals equidistants pel que fa a llurs freqién-
cies de vibracié. Cadascun d’'aquests dotze intervals s'anomena semito. Si r és I'augment de
freqiéncia d'una nota al semitd immediat superior, fan falta dotze ascensos, és a dir, multi-
plicar dotze vegades consecutives per r la freqliencia de partida, fins a arribar a I'octava, la
nota corresponent a la duplicacio de la freqliencia original. Aixo vol dir que pujar un semito
equival a multiplicar la freqiieéncia per 1.059:

12vegades .

r-r-cdots r=r?=2=r= ¥2~1059
| dotze pujades successives de semito equivalen a una pujada directa d'una octava, la fre-
gliéncia duplicada:

Do — Do# — Re — Re#Mi — Fa — Fa# — Sol — Sol# - La — La# — Si — Do
“ “ “ . . . “ . . “ .
+1.059 -1.059 +1.059 -1.059 -1.059 -1.059 -1.059 -1.059 -1.059 -1.059  -1.059

L'escala Unica més corrent avui dia en les guitarres és la de 650 mm. Pero ja s’ha dit que les
cordes no es disposen paral-leles, sind que van separant-se regularment, com un ventall, des
de la celleta fins al pont. A la celleta la separacié acostuma a ser de 8 mm i al pont, d'uns
11 mm. Com a consequiéncia, les parts vibrants de les cordes no tenen exactament les ma-
teixes longituds. Les longituds vibrants de les cordes primera i sisena sén iguals. També sén
iguals, perd un xic més curtes, les de la segona i la cinquena. També sén iguals, perd encara
una mica més curtes, les de la tercera i la quarta.

A la taula 1 es mostren les posicions dels trasts parallels d'una guitarra quan adaptem les
frequéncies a una escala de 650 mm. No sén equidistants i les separacions es van reduint a
mesura que s'apropen al pont, la freqliencia sonora augmenta i el so es fa més agut.
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Taula 1. Posicions dels dotze primers trasts paral-lels d’'una guitarra (m: menor, M: major, +: augmentada).

Escala de Relacié Fregiiéncia /nter.val Retall de longitud vibrant | Separacié entr.e trasts
650 mm musical de corda (mm) consecutius
0 27 (0/12) 1.000 Unison 0.000 -
2/ (1/12) 1.059 2am 36.482 36.482
2 27 (2/12) 1.122 2a M 70916 34434
3 2/\(3/12) 1.189 3am 103.417 32.501
4 27 (4/12) 1.260 3aM 134.095 30.677
5 2/ (5/12) 1.335 4a 163.050 28.956
6 27 (6/12) 1.414 4a + 190.381 27.330
7 27\ (7/12) 1.498 5a 216.177 25.796
8 2/\(8/12) 1.587 6am 240.526 24.349
9 27 (9/12) 1.682 6aM 263.508 22.982
10 2A(10/12) 1.782 7am 285.200 21.692
11 2A(11/12) 1.888 7aM 305.674 20.475
12 2A(12/12) 2.000 8a 325.000 19.326

Teorema de I’entonacio per a guitarres amb trasts paral-lels

La guitarra classica i les seves cosines acustiques i electriques tradicionals es construeixen
amb trasts paral-lels i separats tal com s’exposa en la taula 1. També comparteixen I'equidis-
tancia de cordes a la celletai al pont. Totes aquestes mides sén un xic inferiors en les guitarres
amb cordes d'acer que en les que tenen cordes de nilé. Una corda al trast vi, per exemple,
redueix la seva longitud vibrant als 2/3. Qualsevol altra corda en el mateix trast ha de reduir
la seva longitud vibrant als seus 2/3. Com s’assegura aixo0?

Ja s’ha dit que els trasts i les cordes d'una guitarra, des de la celleta fins a la celleta del pont,
componen una reticula trapezoidal que s'anomena reticula sonora. Gracies al parallelisme
entre ambdues celletes i els trasts, les celles d’aquesta reticula també sén totes trapezoidals
(figura 2).
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Figura 2. Trapezi sonor de la guitarra.

A més d'aixo, I'equidistancia de les cordes en passar per la celleta i per la celleta del pont fa
que interceptin els trasts en cinc parts iguals. A la taula 2 es mostren les seccions correspo-
nents en una guitarra hipotética de n cordes.
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Taula 2. Seccions provocades en els trasts per I'equidistancia de les cordes.

Corda Seccié creada per la corda
1a 0/(n—1)
2a 1/(n—1)
3a 2/(n—1)
enésima (n—=1)/(n—1)

Els valors de n sén discrets i naturals. Pero si tenim en compte que els trasts no sén equidis-
tants i que, per tant, les seccions que a les cordes provoquen les seves intercepcions no es
corresponen amb valors enters, el teorema que necessitem es pot plantejar amb valors reals:

Teorema 1 (d’entonacié de les guitarres amb trasts parallels). En un trapezi ABCD de costats
parallels AB i CD, sigui P sobre AC tal que AC/AP = k. Aleshores, la parallela als costats AB
i CD tracada per P determina un punt Q sobre BD que el divideix en la mateixa proporcio:
BD/BQ = k (figura 3).

C D

Figura 3. Teorema d’entonacié amb trasts paral-lels.

AB i CD vindrien a ser la celleta i la celleta del pont de la guitarra, i PQ, qualsevol trast in-
termedi entre elles. AC i BD representen qualsevol parell de cordes. Aquest teorema evoca
el conegut com a teorema de la parallela mitjana, la proposicié 2 del llibre vi dels Elements
(Euclides, 1991):

Teorema 2 (de la parallela mitjana). El segment que uneix els punts mitjans de dos costats
d’un triangle és paral-lel al tercer costat i la seva longitud és la meitat d’aquest.

El teorema 1 és una generalitzacio del reciproc d'aquest teorema 2. No fa referéncia als punts
mitjans, sind als punts que divideixen els costats en qualsevol ra6 k. Tampoc no es limita al
triangle, sin6 al trapezi. Comencem veient la generalitzacio del reciproc del teorema 2 (de la
parallela mitjana) al triangle:

Teorema 3 (generalitzacié del reciproc de la paral-lela mitjana).En un triangle ABC, sigui P sobre
AC tal que AC/AP = k. Aleshores, el punt Q que la parallela r a BC tracada per P determina
sobre AB, el divideix en la mateixa proporcié: AB/AQ = k (figura 4).
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C B

Figura 4. Generalitzacié del teorema de la paral-lela mitjana a una seccié k qualsevol.

Si PQ i BC son parallels, APQ i ABC son triangles semblants. Pel teorema de Tales, els seus
costats sén proporcionals i la proporcio entre AC i AP és la mateixa que la que hi ha entre AQ
i AB. Per tant, AB/AN = k. Demostrat en el triangle, demostrarem ara la generalitzacié en un
parallelogram.

Teorema 4 (generalitzacid del teorema 3 al parallelogram).En un parallelogram ABCD, prenem
un punt P sobre AC tal que AC/AP = k. Aleshores, el punt Q que la parallela a BC tracada per
P determina sobre BD, el divideix en la mateixa proporcié: BD/BQ = r (figura 5).

A B

C D

Figura 5. Generalitzacio al paral-lelogram.

Si tracem la diagonal AD del parallelogram, obtenim P’, el punt de tall de PQ amb AD (figu-
ra6).

A B

h
I 4

Figura 6. La diagonal d’un paral-lelogram el divideix en dos triangles iguals.

Si apliquem el teorema 3 al triangle ACD, tenim que P’ divideix AD en la mateixa proporcio
que P divideix AC, és a dir: AD/AP" = k. Si repliquem el procés al triangle DAB, també Q
divideix DB en la mateixa proporcié que P’ divideix DA : BD/AP" = BD/BQ = k.
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Per demostrar el teorema 1, la generalitzacié d’aquest ultim teorema al trapezi, sigui ABCD
un trapezi en el qual P divideix AC en una ra6 k. Veurem que la parallela a CD tracada per P
divideix I'altre costat BD de la mateixa manera (figura 7):

A B

C D

Figura 7. Generalitzacio a qualsevol fraccié del reciproc de la paral-lela mitjana.

Si tracem per A una paral-lela a BD, obtenim dos punts de tall: D’ sobre CD i P’ sobre PQ (figura
8). D’aquesta manera, el trapezi queda descompost en un triangle ACD’ i en un paral-lelogram
ABDD'.

D’
C D

Figura 8. Trapezi dividit en un triangle i un paral-lelogram.

Si apliquem el teorema 3 al triangle ACD’, obtenim un punt P’ que divideix AD’ en la mateixa
proporcié que P divideix AC. Si apliquem el teorema 4 al parallelogram ABDD’, tenim que Q
divideix BD en la mateixa proporcié que P’ divideix AD’ i que és, en conseqliéncia, la mateixa
en la qual P dividia AC. Aixi queda demostrat el teorema 1 sobre I'entonacié en guitarres amb
trasts parallels i, per extensio, en instruments de corda amb trasts d’aquest tipus. Tal com
intuiem, el teorema de proporcionalitat de Tales n’és el rerefons.

Val a dir que el teorema no obliga a observar I'equidistancia de cordes a la celletai a la
celleta del pont. Si ambdues son paralleles i els trasts son paral-lels, qualsevol trast i qualsevol
parell de cordes formara sempre amb la celleta del pont un trapezi (figura 9) que permetra
I'aplicacié del teorema 1, i I'instrument entonara correctament.

Celleta

Trast

Celleta del pont

Ce Cs (VI G G

Figura 9. L’equidistancia de cordes no és necessaria.
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El teorema 1 no és altre que el reciproc del teorema del punt mitja del trapezi referit per De
Villiers (2013) i que representa una generalitzacié del teorema de la bimediana:

Teorema 4 (bimediana). Siguin MN i PQ les medianes dels costats oposats d’'un trapezi ABCD
en el qual els costats AB i CD son paral-els. Aleshores, PQ i MN es tallen pels seus punts mit-
jans.

Atés que en el teorema 1 les divisions dels costats oposats del trapezi van més enlla dels seus
punts mitjans, aquesta és una generalitzacié del teorema de la bimediana.

Teorema d’entonacio per a guitarres sense trasts paral-lels

Avui dia es construeixen tot tipus de guitarres d’escala multiple (figura 10): classiques, acus-
tiques, eléctriques... Els motius principals son dos: d'una banda, s'aconsegueix augmentar el
nombre de cordes sense que les més greus hagin de ser massa gruixudes per tal de mantenir
una tensiod i un so equilibrat amb els de les restants, és per aixo que la majoria de guitarres
d’escala multiple acostumen a tenir més de sis cordes; d'altra banda, els trasts no parallels
permeten un accés i una posicié del canell de la ma esquerra més natural en els primers i
ultims trasts del diapaso.

i b A 2 A
2 -

Figura 10. Guitarra de nou cordes d’escala multiple construida per Daniel Zucali (Haag, Austria).

Com es mostra a la figura 10, la reticula sonora limitada per la celleta, la celleta del pont i
les cordes primera i sisena ja no és trapezoidal, sind que només té forma de quadrilater. Les
seves celles tampoc ja no son trapezoidals. Sense cap parallelisme, els teoremes emprats fins
ara no son aplicables.

La caracteristica comuna entre aquestes guitarres i les d’escala Unica és I'equidistancia de les
cordes. Aixo fa que les cordes divideixin dos costats oposats del quadrilater en parts iguals. |
ates que també ara cadascun dels trasts ha d'interceptar totes les cordes en punts correspo-
nents a la mateixa proporcio, el teorema que justifiqui la bona entonacié de I'instrument ve
a ser la generalitzacié ultima del teorema de la parallela mitjana, tant pel que fa al poligon
d'aplicacié (quadrilater) com pel que fa a la ratio de les seccions dels costats (qualssevol).
L'anomenarem teorema de les divisories.
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Teorema 5 (de les divisories d’'un quadrilater). En un quadrilater ABCD es prenen quatre punts
M, N, P i Q sobre cadascun dels costats, de manera que AC/AP = BD/BQ = r i AB/AM =
CD/CN = s (figura 11). De PQ i MN en direm les divisories del quadrilater. Aleshores, el punt O
d'interseccié de les dues divisories verifica que MN/MO = ri PQ/PO = s.

B

Figura 11. Teorema de les divisories.

No hi ha cap parell de segments parallels a la figura 11, pero els podem crear per mirar
d'aplicar la recomanacié de Polya (1988): adaptar la resolucié d'un problema senzill a un de
més complex. Si tracem paralleles a les divisories PQ i MN pels seus punts de tall amb els
costats del quadrilater i pels quatre vértexs d'aquest, aconseguirem superposar una reticula
de parallelograms damunt del quadrilater (figura 12).

=D

Figura 12. Reticula de paral-lelograms generada per les divisories PQ i MN.

Si apliquem el teorema 4 al trapezi AM”N"C, tenim que M”"N” /M"0O = AC/AP = r (figura 13).
El mateix teorema aplicat al trapezi M'BDN’ permet assegurar que M'N'/M'O = BD/BQ = r.

Figura 13. Les divisions d’AC i BD es propaguena M”"N" i M'N'.
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Fixem-nos ara en els triangles ABA’ i CDD’ (figura 14). AMM" i ABA’ son triangles sem-
blants perque tenen els costats parallels i perqué la proporcié entre els seus costats, la que
hi ha entre AM i AB, és s. Pel teorema de Tales, BA' = s - MM". Perd BA' = M'M" i, per tant,
MM” = s - MM”, De manera analoga, en el triangle CDD’ trobem que N'N” = s - NN".

Figura 14. Els triangles ABA’ i CDD".

En benefici de la claredat d'exposicid, direm que x = MM”,y = NN” iz = M”0O, i escriurem
els segments M'N" i BD' en aquests termes:
MN = MM + M'N"+N'N =s-MM" +r-M'O+s-NN"=s-x+r-z+s-y
BD =r- MO=r-(MM"+M'O)=r-(s-MM" +M'O) =r-(s-x+2)

Atés que M'N’ = BD':

SX+rz+sy =r-(sx+2)
SX+1Z+Sy = rsx + 1z

Aix0 permet descompondre MN i obtenir la conclusié:
MN=x+rz+y=rz+rmx=r-(x+2z)=r-MO

Si apliquem el mateix procediment a la divisoria PQ, arribarem a un resultat analeg:
PQ = s - OP. Com es volia demostrar, el punt O divideix cada divisoria en les mateixes raons
en les quals cada divisoria divideix els costats oposats del quadrilater.

El teorema és fals si les divisories no seccionen els costats oposats que connecten en la matei-
xarad, com es posa de manifest a la figura 15. El trast xil divideix per la meitat les cordes ¢; i ¢3.
Pero no fa el mateix amb la corda c;: x; > x,. Aix0 vol dir que si les guitarres d'escala multiple
no es fessin amb equidistancia de cordes en la celleta i en la celleta del pont, I'entonacio
esdevindria impossible.
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Celleta

G Celleta del pont G <

Figura 15. Sense I'equidistancia de cordes les guitarres d’escala multiple no entornarien.

Matematiques, treball artesa i aprenentatge

A la xarxa Internet hom troba moltes webs on lutiers d'arreu expliquen com construeixen
guitarres d’escala multiple amb trasts no parallels. Hi ha guitarres en les quals el trast per-
pendicular a la mediatriu del diapasé és el vii; en d’altres, en canvi, és el xil. Segons escriuen
els lutiers, aix0 depén tant del guitarrista com de les escales (longituds vibrants de les cordes)
i del nombre de cordes que tindra la guitarra. La recerca sobre la justificacié geométrica de la
bona entonacié no va produir cap resultat.

Els origens d’aquestes guitarres son del segle xvi, quan a Europa es va construir un instrument
anomenat bandora que no tenia els trasts parallels. Tres segles després, Novak (1988) va
patentar als Estats Units una guitarra d’escala multiple. En el document de registre explica
com funciona, pero tampoc no ofereix cap justificacié de la seva entonacio correcta.

Aquest treball s’ha redactat pensant en diapasons plans. Les guitarres acustiques i electriques
es fan amb diapasons corbats, pero les cordes es disposen sobre ells observant I'equidistancia
propia dels diapasons plans. Per tant, tots els teoremes desenvolupats sén aplicables també
a aquest tipus de diapasons. La situacio es pot illustrar imprimint el diapasé d’'una guitarra i
després enrotllar-lo en forma de tub. El diapasé esdevé una superficie cilindrica amb trasts
circulars, mentre que les cordes continuen essent rectilinies.

De les diverses relacions entre les matematiques i I'entorn, es destaca aqui que un fenomen
de I'entorn inspira el desenvolupament de coneixement matematic. Es tracta d’un tipus de
relacioé ja assenyalada en un estudi sobre I'Us de les matematiques en I'ambit laboral (Alberti,
2009i2022). En aquesta ocasio, el producte d'un treball artesa com el de la lutieria ha inspirat
el teorema de les divisories amb el qual es pot justificar geométricament la bona entonacioé
de les guitarres, amb o sense trasts parallels. |, per extensid, la dels instruments de corda
amb trasts. Aix0 invita a pensar en la possibilitat de trobar més quiestions rellevants per a les
matematiques en aquesta activitat artesana.

Pensem, per exemple, en el fet que I'equidistancia de cordes no sigui necessaria en les guitar-
res d'escala Unica (amb trasts paral-lels), perd esdevingui essencial en les d’escala multiple
(amb trasts no paral-lels). Un cop situades la primera i la sisena cordes, les instruccions d’'un
lutier de guitarres amb cordes d'acer, per posar les restants son: «[. . .] espaiar les quatre
cordes interiors de manera que equidistin I'una de l'altra. L'espai equidistant s’hauria de de-
terminar entre (sic) les cordes, i no des dels seus centres» (Benedetto, 1994: 187). Aquest



desembre 2022°73

«entre» destacat pel lutier vol dir que les equidistancies s’han de prendre des dels perfils de
les cordes, i no des dels seus centres. La diferéncia no és gaire important en guitarres amb
cordes de nilé perque tots els seus gruixos son forca semblants, ja que només oscil-len entre
0,7 mm i 1,1 mm. En canvi, en les guitarres amb cordes d’acer, la diferencia de gruix entre la
primera corda (0,28 mm) i la sisena (1,32 mm) supera el mil-limetre. Si amb cordes semblants
I'equidistancia es pren des dels centres, la separacié entre els perfils de la cinquena i la sisena
cordes podria superar en més d'1 mm la separacié entre els perfils de la primera i la segona.
Massa diferencia per no afectar I'execucid. Perd no calia que Benedetto es preocupés per
I'entonacid, ja que les guitarres de les quals parlava tenien els trasts parallels i, com s’ha
demostrat, I'equidistancia no és essencial per preservar I'entonacié. |, aixo, tenint en compte
que en els models geométrics utilitzats hem pres una corda com un segment sense gruix.
Les instruccions de Benedetto potser no son, doncs, les més apropiades per a aquest tipus
d’instruments.

Aixd planteja una quiestié essencial sobre la lutieria: ;I'equidistancia de les cordes a la ce-
lleta i a la celleta del pont en les guitarres d'escala multiple és decisié del lutier per preser-
var I'entonacié de I'instrument o és una decisié inconscient que trasllada automaticament a
aquestes guitarres la manera amb que es construeixen les guitarres d’escala Unica? Valdria
esbrinar-ho directament dels professionals de la lutieria. En benefici seu i en benefici de les
matematiques, seria bo fer una interpretacié matematica situada d'aquest ofici basada en
les tres fases en les quals es pot dividir una activitat artesana: 'obra acabada, I'obra en curs
i I'obra en projecte (Alberti, 2007). Els teoremes desenvolupats interpreten matematicament
un aspecte de I'obra acabada i n'estableixen les causes des d'una perspectiva matematica.
Analitzar I'obra en curs i l'obra projectada passaria per veure qué fan els lutiers i que responen
quan se'ls interpella sobre el que volen fer.

A més, la lutieria no hauria d’ignorar les conseqiiéncies que determinats fets i, possiblement,
determinats costums poden tenir en la seva feina. En aquest sentit, la collaboracio entre
matematiques i artesania enriquiria ambdues activitats. De manera natural estem parlant
d'aprenentatge. | les implicacions per a I'aprenentatge academic es poden adrecar a dues
questions principals:

a) D’una banda, la modelitzacié matematica de fenomens de I'entorn. Els entorns social,
cultural i natural es componen de multitud de fenomens que massa sovint, tot i ser
extraordinariament quotidians, ens passen desapercebuts. Es, de fet, la seva quotidia-
nitat la que ens impedeix mirar-nos-els des d'una perspectiva diferent. La guitarra és un
dels instruments musicals més populars. Perod rarament parem esment en el seu poten-
cial com a recurs d'aprenentatge matematic. No hi ha res més important en qualsevol
instrument musical que I'entonacié correcta. Tot plegat fa de I'entonacié un tema per
tractar matematicament a I'educacié secundaria. El cas de les guitarres d’escala Unica
és forca abordable atesa la seva relacié amb el teorema de Tales. Alhora, n'eixampla
I'ambit tradicional d'aplicacié. Ara sabem que el teorema de Tales també serveix per
explicar I'eficacia de les reticules sonores de les guitarres. El cas de les guitarres d'escala
multiple necessita un coneixement més profund dels Elements d'Euclides que rarament
es pot tractar a I'educacioé secundaria.

b) D’altra banda, la demostracié matematica. La modelitzacié digital permet abordar la
questio de I'entonacié de les guitarres d’escala multiple de manera més directa, sense
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haver d'aprofundir gaire en la geometria euclidiana. Si duem a terme una dinamitza-
ci6 digital amb GeoGebra, podem confirmar el teorema de les divisories. Sabrem que
el teorema és cert. Segons Carrillo (2012), I'haurem «demostrat» (sic). Perd GeoGebra
rarament demostra. GeoGebra confirma o refusa. | si confirma la certesa sense que
acabem d’entendre-la, es fara clar que n’haurem de continuar buscant les causes. Aixo
pot implicar créixer més culturalment. Es a dir, aprendre per entendre. La comprensié
definitiva no arribara mentre no demostrem el teorema amb la metodologia propia de
I'ambit en el qual fou plantejat: el de la geometria euclidiana.

Tot s’ha desenvolupat en el pla bidimensional, pero el so es produeix en un espai tri-
dimensional on s’haurien de considerar més variables. Els materials de les cordes, els
seus diametres, les altures sobre els trasts, tot aixo afecta lleugerament, pero afecta,
I'entonacié. La realitat del lutier és que tot instrument es dissenya sobre papers i plan-
tilles planes, on els trasts se situen al diapasé respectant les distancies descrites. Un
cop acabat l'instrument, la realitat entra en joc i s’han de fer ajustaments per restablir
la bona entonacié planejada sobre el paper. Sovint cal desplacar o esmolar un xic la
celleta del pont (unes decimes de mm) o usar cordes lleugerament més primes o més
gruixudes. En fer-ho, el lutier torna a la geometria de I'instrument allo que la realitat li
havia tret.
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