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Anàlisi de la correlació electrònica mitjançant funcions intraculars
Electronic correlation analysis using intracule functions
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Resum: Aquest treball explora la correlació electrònica, un concepte fonamental en l’anàlisi de les aproximacions que s’empren 
en mecànica quàntica per fer simulacions de processos químics. La correlació electrònica afecta tots els observables físics, i en-
tendre aquest concepte és cabdal per poder realitzar simulacions cada cop més realistes. Per tal d’estudiar la correlació electròni-
ca presentem la densitat de parells, que conté informació explícita sobre la interacció entre dues partícules. La densitat de pa-
rells, però, té la complicació d’estar definida en un espai de vuit dimensions i la seva anàlisi directa esdevé molt feixuga tant de 
calcular com d’interpretar. Per aquesta raó, introduïm el concepte forat de McWeeny, que fixa la posició d’un electró, i el con-
cepte funció intracular, que porta a la definició del forat de Coulson. Ambdós mètodes redueixen la dimensionalitat del problema 
i ofereixen un dibuix intuïtiu de la correlació electrònica, que analitzem en sistemes model. No obstant això, l’estudi s’acaba cen-
trant en la descomposició del forat de Coulomb, que té l’avantatge de reduir a una les dimensions que cal estudiar i ofereix una 
relació directa amb un component de l’energia del sistema. Finalment, presentem un sistema model de la molècula d’hidrogen 
que el lector pot analitzar d’una manera exacta. Aquest marc conceptual permet aprofundir en la comprensió de la correlació 
electrònica i contribuir al desenvolupament de mètodes d’estructura electrònica que possibilitin fer simulacions més acurades.

Paraules clau: Correlació electrònica, funcions intraculars, densitat de parells, química teòrica.

Abstract: This study explores electronic correlation, a fundamental concept for analyzing the approximations used in quantum 
mechanics to simulate chemical processes. Electronic correlation affects all physical observables, and understanding this con-
cept is key to enabling increasingly realistic simulations. To study electronic correlation, we present the pair density, which 
contains explicit information about the interaction between two particles. However, the pair density is defined in an eight-
dimensional space, and its direct analysis is computationally demanding and difficult to interpret. For this reason, we intro-
duce the concept of the McWeeny hole, which fixes the position of one electron, and the concept of the intracule function, 
which leads to the definition of the Coulson hole. Both methods reduce the dimensionality of the problem and offer an intui-
tive picture of electronic correlation, which we analyze in model systems. However, we ultimately focus the study on the de-
composition of the Coulomb hole, which has the advantage of reducing the analysis to a single dimension and offers a direct 
connection to a component of the system’s energy. Lastly, we present a model system based on the hydrogen molecule that 
the reader can analyze exactly. This conceptual framework allows for a deeper understanding of electronic correlation and 
contributes to the development of electronic structure methods that enable more accurate simulations.

Keywords: Electronic correlation, intracule functions, pair density, theoretical chemistry.

Introducció

L
a química és una ciència purament empírica o fe-
nomenològica, basada en l’observació i en la for-
mulació de lleis que descriuen el comportament 
de la matèria. Tanmateix, les propietats i la reac-
tivitat dels àtoms i de les molècules tenen l’origen 
en el comportament de les partícules que els for-
men, principalment, els electrons. Aquest com-

portament es pot descriure en essència mitjançant la mecànica 
quàntica. En particular, la resolució de l’equació de Schrödinger 
electrònica independent del temps permet determinar l’estat 
quàntic dels electrons i proporciona una base teòrica per en-
tendre com es distribueix la densitat electrònica, com es for-
men els enllaços i com interaccionen les molècules entre si. 
Aquesta equació es pot expressar de la manera següent:

	  H E ,� (1)

on   
eN eeH T V V    és el hamiltonià electrònic; T , l’operador 

d’energia cinètica dels electrons; 
eNV , el potencial electró-nucli, 

i eeV , el potencial de repulsió entre electrons. Ψ és la funció 
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d’ona electrònica, i juntament amb E, l’energia del sistema, 
són la solució d’aquesta equació. Ψ conté tota la informació 
sobre els electrons del sistema. Aplicar el hamiltonià H  sobre 
la funció d’ona ens proporciona l’energia total de l’estat del 
sistema electrònic que representa Ψ. Podem obtenir altres 
propietats, com, per exemple, el moment dipolar, aplicant 
l’operador que correspongui a l’observable que es vol mesurar.

Ara bé, aquesta equació només es pot resoldre exactament 
per a sistemes amb un nucli i un sol electró, com l’àtom d’hi-
drogen. Per a sistemes amb més d’un electró, la presència  
del terme eeV , que defineix el potencial de repulsió electró-
electró, fa que l’equació esdevingui impossible de resoldre 
analíticament. És en aquest punt que la química teòrica re-
corre a mètodes aproximats per estimar la funció d’ona i 
l’energia del sistema. Algunes d’aquestes aproximacions, com 
el mètode de Hartree-Fock (HF) [1, 2] i els seus derivats (cone-
guts com a mètodes post-Hartree-Fock) o la teoria del funcio-
nal de la densitat (DFT, de l’anglès density functional theory) 
[3], han esdevingut fonamentals per fer càlculs pràctics sobre 
molècules i materials.

El mètode de HF és una de les aproximacions més bàsiques 
utilitzades en química quàntica. En aquest marc, la funció 
d’ona del sistema s’aproxima com un sol determinant de 
Slater, que és una combinació antisimètrica d’orbitals mono- 
electrònics ocupats per cadascun dels N electrons de la molè-
cula. En concret, la solució de HF és aquella on s’ocupen els 
N espín-orbitals de més baixa energia. Aquesta forma assegura 
que es compleixi el principi d’exclusió de Pauli i que els elec-
trons siguin indistingibles, però assumeix que els electrons es 
mouen en un camp mitjà efectiu generat pels altres electrons. 

Aquesta descripció implica una limitació important: la repul-
sió electró-electró es tracta d’una manera incompleta. En par-
ticular, els electrons d’espín oposat no presenten correlació en 
aquesta aproximació —‌com veurem més endavant— i la corre-
lació entre els electrons del mateix espín, encara que conside-
ra el principi d’exclusió de Pauli, tampoc no està completa-
ment descrita. Per tal d’obtenir aquests efectes de correlació i 
apropar-nos a una funció d’ona més exacta, es poden conside-
rar combinacions lineals de múltiples determinants de Slater. 
Cada determinant representa una configuració electrònica al-
ternativa —‌és a dir, una distribució concreta dels electrons en 
els M espín-orbitals disponibles, que venen determinats per la 
dimensió de la base que emprem per fer el càlcul. 

Una funció d’ona correlacionada es pot expressar com:
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on ϕn són els orbitals moleculars (o espín-orbitals) que definei-
xen la posició i l’espín de cada electró, D0 es dona explícita-
ment i correspon al determinant HF que utilitza els orbitals 
ϕ1…ϕN, Di són altres determinants construïts a partir d’orbitals 
moleculars excitats i (1,2,…,N) són les coordenades electròni-
ques que representen cada electró en una posició r ≡ (x, y, z) i 
un espín ω  ϵ (α, β ) donats. Cada determinant és multiplicat  
per un factor que indica la importància de cada configuració 
electrònica a la funció d’ona total, i la suma del quadrat de 
tots els coeficients sempre ha de ser igual a la unitat, 2 1ii

c  , 
per garantir la normalització de la funció d’ona. Si afegim to-
tes les configuracions possibles, és a dir, si considerem totes 
les opcions de distribuir els N electrons en els M espín-orbitals 
disponibles, tindrem la funció d’ona exacta mitjançant una 
base de M espín-orbitals, també anomenada funció d’ona FCI 
(de l’anglès full configuration interactions). Quan el factor  
cO = 1, tots els altres coeficients són zero i, per tant, la funció 
d’ona és descrita per un sol determinant. El determinant aïllat 
que minimitza l’energia electrònica és la funció d’ona de HF.

La correlació electrònica engloba tots els efectes que l’aproxi-
mació de HF no és capaç de descriure. Més específicament, 
Löwdin va definir l’energia de correlació com la diferència en-
tre l’energia obtinguda amb una funció d’ona exacta i una 
funció d’ona de HF [4]:

	 Ecorr = Eexacta – EHF.	 (3)

Aquesta diferència d’energia reflecteix l’efecte de les interac-
cions electró-electró que no són captades pel camp mitjà del 
mètode de HF. Analitzar la correlació electrònica i entendre 
com afecta l’addició de determinants de Slater a la funció 
d’ona no és una tasca senzilla. Les funcions d’ona són objectes 
altament complexos: per cada electró hi ha tres coordenades 
espacials i una d’espín, de manera que per a un sistema amb 
N electrons, com el formaldehid (amb quinze electrons), la 
funció d’ona viu en un espai de seixanta dimensions. Aquesta 
complexitat fa que comprendre i visualitzar la funció d’ona si-
gui una tasca altament complexa.
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Segons la interpretació de Born [5], el quadrat de la funció 
d’ona representa la densitat de probabilitat conjunta de tro-
bar els electrons a unes coordenades determinades. Si inte-
grem les coordenades de N – 1 electrons, obtenim una funció 
de tan sols una coordenada electrònica (és a dir, tres d’espai i 
una d’espín), coneguda com a densitat electrònica, que s’ex-
pressa d’aquesta manera:

	      *1 2 1,2, , 1,2, , .N d dN N N       	
(4)

El factor N normalitza adequadament la funció i ρ(1) és pro-
porcional a la densitat de probabilitat d’electrons a la coorde-
nada electrònica 1. Aquesta funció permet visualitzar com es 
distribueix la càrrega electrònica en una molècula i calcular 
propietats importants —‌com el nombre total d’electrons i la 
densitat d’espín— o propietats derivades —‌com el moment  
dipolar. Així, podem fer una certa connexió entre la funció 
d’ona i conceptes químics tradicionals [6]. Més enllà del seu 
interès teòric, la densitat electrònica és un observable físic i, 
per tant, es pot mesurar experimentalment, per exemple, mit-
jançant tècniques de difracció de raigs X. Això estableix un 
vincle directe entre la descripció quàntica i els resultats ex-
perimentals. Atès que la densitat es defineix en l’espai real, es 
pot representar mitjançant isosuperfícies. Per exemple, a la fi-
gura 1, representem la densitat de la molècula H2:

Figura 1.  Representació mitjançant isosuperfícies de la densitat de la molècula H2, 
amb valors de 0,001, 0,005, 0,01, 0,05 i 0,1 bohr. El color verd clar correspon a les 
regions de densitat baixa i el color taronja indica valors alts. Elaboració pròpia.

Podem veure que la càrrega electrònica se centra als nuclis i 
que també hi ha càrrega al llarg de l’enllaç H–H.

Tanmateix, la densitat electrònica és una quantitat obtinguda 
a partir de la funció d’ona total que integra les coordenades 
de tots els electrons excepte un. Aquest procés redueix la in-
formació disponible i elimina qualsevol detall explícit sobre la 

manera com es correlacionen les posicions dels electrons en-
tre si. En conseqüència, és difícil obtenir informació directa 
sobre la correlació de parells d’electrons. Tot i això, alguns au-
tors, com Cremer, han suggerit que certes característiques de 
la densitat electrònica poden estar associades amb la correla-
ció electrònica [7], si bé la informació que se’n pot treure és 
relativament limitada.

Per accedir a una descripció més explícita de la interacció en-
tre electrons, hem de considerar funcions que depenen de més 
d’una coordenada electrònica, com la densitat de parells. 
Aquesta funció deixa explícites dues coordenades electròni-
ques abans d’integrar les N – 2 restants:

       *
2

1
1,2 3 1,2, , 1,2, , .

2

N N
d dN N N  


     	

(5)

Aquesta expressió és proporcional a la densitat de probabilitat 
de trobar un electró a la coordenada 1 i un altre a la coorde-
nada 2 simultàniament. El factor  1

2

N N   correspon al nombre 
total de parells d’electrons possibles del sistema. Si la funció 
d’ona és de tipus Hartree-Fock, construïda a partir d’un sol 
determinant de Slater, la densitat de parells es pot escriure  
en termes de la densitat de primer ordre com:

	        HF HF HF HF 2
2 1

1,2 1 2 | 1;2 | ,      	 (6)

on  HF
1

1;2  és la matriu de densitat reduïda de primer or- 
dre de la funció d’ona de HF. La matriu reduïda de primer  
ordre (1-rDM, de l’anglès first order reduced density matrix)  
de qualsevol funció d’ona és definida de la manera següent:

	      *
1 1;1 2 1,2, , 1,2, , ,N d dN N N        	 (7)

on hem fet servir coordenades diferents per a l’electró 1 de 
cada funció d’ona. Aquesta matriu reduïda de primer ordre és 
una funció d’un electró, tot i dependre de dues coordenades. 
Si igualem la coordenada 1 i la 1ʹ, obtindrem la densitat 
(equació 4).

L’equació 6 mostra dues contribucions: el producte de densi-
tats, que correspon als electrons estadísticament indepen-
dents, i la 1-rDM al quadrat, que exclou que dos electrons 
amb el mateix espín es trobin en la mateixa posició (pel prin-
cipi d’exclusió de Pauli). Aquesta correlació entre electrons 
del mateix espín s’anomena correlació de Fermi o exchange. 
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La funció d’ona de HF representa prou bé la interacció entre 
electrons del mateix espín, però no captura la correlació elec-
trònica associada a la repulsió de Coulomb, que és l’única que 
apareix entre electrons d’espín oposat i que també tenim en-
tre electrons del mateix espín. Aquest fet es pot posar de ma-
nifest si separem la densitat de parells de HF mitjançant con-
tribucions d’espín. Per exemple, per al mateix espín, obtenim

	               HF, HF, HF, , 2
2 1, | ; |HF

1 2 1 2 1 2r r r r r r
	

(8)

per als electrons amb espín α (i, anàlogament, per als elec-
trons amb espín β ), i

	
     , , ,

2 ,HF HF HF    1 2 1 2r r r r
	

(9)

per als electrons amb espín contrari. Aquí, la probabilitat de 
trobar un parell d’electrons ve donada pel producte de densi-
tats de cada electró per separat. Precisament, això representa 
la principal limitació de Hartree-Fock: els electrons d’espín 
contrari no presenten cap tipus de correlació i, per tant, la po-
sició de l’un no afecta l’altre. 

A partir de l’equació 6, podem construir la densitat de parells 
aproximada basada en un sol determinant (SD, de l’anglès 
single determinant):

	        SD 2
2 1

1,2 1 2 | 1;2 | ,    
	

(10)

on, en aquest cas, la densitat i la matriu de densitat reduïda 
de primer ordre no venen d’una funció d’ona de HF, sinó d’una 
funció d’ona correlacionada. D’aquesta manera introduïm part 
de la correlació electrònica no inclosa en l’equació 6. Amb 
aquesta nova definició, la densitat de parells totalment corre-
lacionada, o exacta, es pot expressar de la manera següent:

	      IISD
2 2 2
1,2 1,2 1,2 ,c   

	
(11)

on  II
2
1,2c  és el cumulant, que encapsula els efectes de cor-

relació electrònica que no es poden expressar ni com a pro-
ductes de densitats ni com a correccions d’un sol determinant.

Per tal d’analitzar la correlació electrònica d’una forma més 
intuïtiva, sovint es defineix la funció de correlació de parells, 
que mesura com es modifica la densitat de parells quan afe-
gim correlació a la funció d’ona de HF. Es defineix com la di-
ferència entre la densitat de parells exacta i la de HF:

	      HF
2 2 2
1,2 1,2 1,2 .c   

	
(12)

Aquesta funció pot mostrar regions de valor negatiu —‌zones 
on disminueix la probabilitat de trobar els electrons a 1 i 2, 
respectivament— o de valor positiu —‌zones on la correlació 
augmenta aquesta probabilitat. Així, es pot veure com la fun-
ció de correlació reflecteix l’efecte de repulsió electrònica que 
HF ignora parcialment.

Considerant les equacions 11 i 12, podem escriure la funció 
de correlació de parells com:
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2 2 2 2
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1,2 1,2 1,2 1,2 .
c
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

     

	

(13)

D’aquesta manera es veuen els dos components de la correla-
ció electrònica; per un costat, la que afegim amb una descrip-
ció exacta de la 1-rDM, i, per l’altre, amb el cumulant, que té 
en compte la resta de la correlació.

Per visualitzar la diferència entre una densitat de parells cor-
relacionada i la densitat de parells de HF, a la figura 2 es mos-
tren els valors de les densitats de parells de HF i FCI a l’eix de 
l’enllaç de la molècula H2, quan fixem el primer electró a 
l’àtom H i movem el segon electró a l’eix de l’enllaç.

Figura 2.  Densitats de parells de HF i FCI per a la molècula d’hidrogen en l’estat 
fonamental a la distància d’equilibri, utilitzant la base STO-3G. La coordenada 
electrònica 1 es manté fixa sobre l’àtom H, mentre que la coordenada 2 es desplaça 
al llarg de l’eix de l’enllaç, des de -3 bohr a 4 bohr (travessant els àtoms H i Hʹ). 
Elaboració pròpia.

Com que en el H2 només hi ha dos electrons amb espín con-
trari, la densitat de parells de HF no els correlaciona. Per això 
es veu com la corba taronja distribueix simètricament la pro-
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babilitat del segon electró (sense que afecti la posició de 
l’electró de referència). En canvi, la funció exacta mostra una 
deslocalització asimètrica: el segon electró evita la regió del 
primer nucli on hi ha l’electró de referència i prefereix estar 
en la zona de Hʹ —‌un clar efecte de com la correlació electrò-
nica corregeix el dibuix donat per la funció d’ona de HF.

Forats de correlació de McWeeny
La idea de com un electró de referència afecta la posició de 
l’altre electró es pot expressar intuïtivament amb una sola 
funció, utilitzant els forats de correlació de McWeeny [8]:

	
   

   2
1,2

1;2 2 ,
1xch





 

	
(14)

on es fixa un electró a la coordenada 1. El terme ρ2(1,2)/ρ(1) 
correspon a la densitat condicional, és a dir, la probabilitat de 
trobar un segon electró a la posició 2, atès que ja n’hi ha un  
a la posició 1. En restar-hi la densitat independent ρ(2), s’obté 
la desviació respecte al comportament no correlacionat. 
Aquesta funció, coneguda com a forat de bescanvi-correlació, 
mesura com la presència d’un electró redistribueix la densitat 
dels altres al seu voltant, a causa tant del principi de Pauli 
com de la repulsió electroestàtica.

La funció hxc(1;2) sovint pren valors negatius o nuls: la presèn-
cia d’un electró redueix la probabilitat de trobar-ne un altre a 
prop. Quan hxc(1;2) = 0, això indica que la presència de l’elec-
tró de referència no modifica la distribució dels altres electrons 
i, per tant, no hi ha correlació entre els parells per a aquesta 
configuració espacial.

Per descompondre aquest forat, considerem la forma general 
de la densitat de parells (equació 11) i la definició de la densi-
tat de parells SD (equació 10):

	          II2
2 1 2
1,2 1 2 | 1;2 | 1,2 ,c       	 (15)

i, substituint l’expressió en el forat (equació 14), obtenim:
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(16)

El primer terme, amb el producte de densitats, correspon als 
parells d’electrons no correlacionats, de manera que s’anul·la 

quan li restem ρ(2). Els altres dos es poden identificar com les 
contribucions de bescanvi i de correlació:
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Així, el forat de bescanvi hx(1;2) s’origina per l’antisimetria de 
la funció d’ona i afecta només els electrons amb el mateix es-
pín, mentre que el forat de correlació hc(1;2) afecta també els 
d’espín oposat.

En el cas de la molècula d’hidrogen, amb dos electrons d’es-
pins oposats, per a HF no existeix forat de bescanvi (no hi ha 
dos electrons del mateix espín) i el cumulant és zero (ja que hi 
ha un sol determinant). Per tant,

	    HF HF1;2 1;2 0,xc ch h  	 (18)

la qual cosa indica que HF considera que la posició de l’elec-
tró 1 no afecta la posició de l’electró 2.

En canvi, en una descripció correlacionada, com la que obtin-
dríem amb una funció d’ona FCI, la densitat de parells conté 
una contribució del cumulant,  II

2
1,2 0c  . Per tant, el forat 

de correlació és diferent de zero. En aquest cas, el forat de 
bescanvi-correlació només té el component de correlació.  
A la figura 3 es mostra aquest forat per al H2 en la geometria 
d’equilibri:

Figura 3.  Forat de McWeeny per a la molècula d’hidrogen en l’estat fonamental a la 
distància d’equilibri obtingut mitjançant el mètode FCI, utilitzant la base STO-3G. La 
coordenada electrònica 1 es manté fixa sobre l’àtom H, mentre que la coordenada 2 
es desplaça al llarg de l’eix de l’enllaç, des de -3 bohr a 4 bohr (passant pels àtoms H 
i Hʹ). Elaboració pròpia.
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La interpretació d’aquest forat és clara: el valor mínim al vol-
tant de l’àtom H ens indica que la probabilitat de trobar el se-
gon electró en aquesta posició és molt baixa mentre el primer 
electró és allà. A mesura que ens allunyem de l’electró de re-
ferència, la probabilitat de trobar el segon electró augmenta. 
Quan ens allunyem a distàncies grans respecte al primer elec-
tró, aquest ja no afecta el segon electró i el valor del forat és 
zero.

Així doncs, les figures 2 i 3 estan directament relacionades. La 
funció de McWeeny s’associa a la diferència entre la corba FCI 
i la HF representades a la figura 2, normalitzada respecte a la 
densitat ρ(1); és a dir, per a sistemes com el H2 que no presen-
ten bescanvi,
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
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on a la figura 2 la corba taronja està relacionada amb el ter-
me ρ(2) i la blava, amb el terme ρ2

FCI(1,2)/ρ(1). Això permet 
una interpretació clara del forat com la diferència entre una 
descripció que incorpora la correlació electrònica i una que no 
ho fa.

Forats de correlació de Coulson 
i funcions intraculars
Tot i la utilitat conceptual del forat de correlació de 
McWeeny, cal tenir en compte que aquest parteix de la  
premissa que un electró es troba en una posició fixa. Això pre-
senta una limitació important, ja que tenim moltes opcions 
per escollir la posició d’aquest electró de referència i, per cada 
una, la forma del forat serà diferent. A més, aquest enfoca-
ment no està directament connectat amb propietats globals 
del sistema, com ara l’energia de repulsió electró-electró Vee, 
que és un dels components de l’energia més afectats per la 
correlació electrònica. Aquesta energia es pot expressar en 
termes de la densitat de parells com:
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la qual cosa posa de manifest que la repulsió electró-electró 
depèn només de la separació entre electrons.

Aquest fet motiva la introducció de la funció intracular, una 
eina que permet estudiar la distribució dels parells d’electrons 
en funció de la seva separació, independentment de quina en 
sigui la posició absoluta o l’orientació. El concepte funció in-
tracular va ser introduït per Coulson i Neilson [9] i, més enda-
vant, formalitzat per Coleman [10], que va destacar-ne la relle-
vància per descriure la funció d’ona i la correlació electrònica 
mitjançant una projecció més manejable de la densitat de pa-
rells. Des d’aleshores, ha estat aplicada i refinada per diversos 
autors —‌com Smith, Cioslowski, Boyd, Ugalde i col·laboradors 
[11-21]—, especialment, per comparar densitats de parells cor-
relacionades amb referències de HF. La idea bàsica és reduir la 
densitat de parells, p2(1,2) ≡ p2(r1,r2,ω1,ω2), que depèn de vuit 
variables (tres coordenades espacials i una d’espín per electró), 
a una funció de la distància entre electrons.

Aquest procés s’inicia definint la funció intracular vectorial:

	      1 2 2 1 2, , , ,I d d d d       1 2 12 1 2s r r r s r r
	

(21)

on r12 = r1 – r2 és el vector de separació entre dos electrons. 
Aquesta funció compatibilitza els parells d’electrons que es 
troben separats pel vector s, independentment de la seva ubi-
cació a l’espai molecular.

Per exemple, al dímer d’heli (figura 4), la intracular vectorial 
presenta tres màxims (figura 5). El central correspon als pa-
rells d’electrons dins d’un mateix àtom —‌per tant, als dos  
parells d’electrons: Heα-Heβ i Heʹα-Heʹβ. Els dos màxims simè-
trics als extrems s’associen als parells que es formen entre 
electrons de diferents àtoms; en aquest cas, quatre: Heα-Heʹα, 
Heα-Heʹβ, Heβ-Heʹα i Heβ-Heʹβ. La simetria I(s) = I(–s) garan-
teix la igualtat d’aquests màxims.

Figura 4.  Representació esquemàtica del dímer d’heli en l’espai real, amb els parells 
d’electrons possibles: en verd, els intraatòmics, i en blau, els interatòmics. Elaboració 
pròpia.
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Figura 5.  Funció intracular vectorial per al dímer He2. Els màxims (amb color vermell 
fosc) indiquen les separacions més probables entre parells d’electrons, mentre que el 
verd clar reflecteix una densitat de parells baixa. Elaboració pròpia.

Tot i la seva riquesa informativa, la intracular vectorial és di
fícil d’interpretar en sistemes grans. Per això, se sol reduir a  
la funció intracular radial, que només depèn de la magnitud 
s = |s|. Aquesta funció es defineix integrant totes les orienta-
cions angulars:

	      
2

2 2
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,I s s I d s d d I
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     s s

	
(22)

on s ≡ (s, θ, ϕ) es representa en coordenades esfèriques.

La funció intracular radial, I(s), mostra la densitat de parells 
d’electrons a una separació s, independentment de l’orienta-
ció. Aquesta funció és especialment rellevant perquè permet 
expressar l’energia de repulsió electró-electró com:
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fet que destaca la relació directa entre I(s) i les propietats 
energètiques globals. 

S’han proposat mètodes eficients per al càlcul directe de la 
funció intracular, com el de Cioslowski i Liu [22], o l’esquema 
PRISM, desenvolupat per Peter Gill [23]. En aquest treball s’ha 
fet servir l’algoritme de Cioslowski i Liu per dur a terme la fi-
gura 6, on es representa la intracular per al dímer d’heli. El 
primer pic de la intracular a distàncies curtes correspon als 
parells intraatòmics, i el segon, a distàncies més llargues, re-
flecteix els parells interatòmics (vegeu la figura 6). El segon 
pic és més alt perquè correspon als quatre parells d’electrons 
que es formen entre els àtoms. Si integrem tota la intracular, 
tindrem el nombre total de parells d’electrons del sistema; en 
aquest cas, 6. A la figura hem representat la intracular que 
prové de la densitat de parells de HF (ρ2

HF) i la intracular de la 

densitat de parells exacta o FCI (ρ2
FCI). Aquesta representació 

permet comparar de forma visual com ρ2
HF i ρ2

FCI distribueixen 
els parells d’electrons, si bé les diferències són tan petites que 
costa de veure-les. 

Figura 6.  Funció intracular radial per al dímer He2 representada en l’espai 
interelectrònic, obtinguda a partir de la densitat de parells exacta i de la de HF. 
Elaboració pròpia.

A partir d’aquesta funció, s’han desenvolupat propostes com 
la teoria funcional intracular (IFT, de l’anglès intracule func-
tional theory), de Peter Gill [24, 25], que planteja construir 
mètodes d’estructura electrònica a partir de I(s), anàlegs a la 
DFT, però centrats a reconstruir l’energia com un funcional 
de la intracular de la densitat de parells. Malgrat el seu inte-
rès conceptual, la IFT té limitacions pràctiques, principal-
ment, pel que fa a la inversió del funcional i a la seva uni
versalitat.

Partint de les intraculars de les diferents densitats de parells, 
podem definir el forat de correlació de Coulson, una eina per 
analitzar l’efecte de la correlació electrònica en la distribu-
ció dels parells d’electrons. Aquest forat s’obté com la dife-
rència entre la funció intracular radial exacta i la correspo-
nent a HF:

	      exacta HF .ch s I s I s  	 (24)

A diferència de la figura 6, aquest forat mostra clarament 
com la correlació redistribueix la densitat de parells: redueix 
la probabilitat de trobar electrons a distàncies curtes (on HF 
tendeix a sobreestimar la coincidència d’electrons) i la com-
pensa lleugerament a distàncies intermèdies. Per al dímer  
de He2, obtenim la figura 7:
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Figura 7.  Forat de correlació de Coulson per al dímer He2 (línia contínua) i forat 
ponderat amb 1/s (línia discontínua). Elaboració pròpia.

Aquesta representació, unidimensional i intuïtiva, encapsula 
l’efecte complex de la correlació electrònica. A més, té una 
importància energètica directa: si s’integra el forat ponderat 
amb 1/s (vegeu la línia discontínua de la figura 7), s’obté 
l’energia de correlació electrònica:
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Aquesta integral reforça el paper fonamental de les distàncies 
interelectròniques curtes en la contribució a l’energia de cor-
relació. Com es veu a la figura 7, les corbes ponderades posen 
en relleu que les regions properes a s = 0 predominen en la 
contribució energètica. Tot i que la integral de hc(s) és nul·la (ja 
que el forat només redistribueix la densitat de parells, sense 
crear ni eliminar parells), la integral de hc(s)/s és negativa. Això 
reflecteix un resultat fonamental: la correlació electrònica dis-
minueix l’energia total del sistema, ja que evita la coincidència 
d’electrons a distàncies curtes, on la repulsió és màxima.

En contrast amb l’enfocament de McWeeny, el forat de Coul-
son no requereix fixar cap electró i proporciona una descrip-
ció més global, energèticament significativa i físicament in-
tuïtiva de la correlació electrònica.

Separació del forat de Coulson
En els darrers anys, el nostre grup ha aprofundit en l’anàlisi de 
la funció intracular com una eina per caracteritzar la correla-
ció electrònica en les seves diverses formes. Basant-nos en 
l’equació 13, on separem la densitat de parells de correlació 

en els components ρ2
cI(1,2) i ρ2

cII(1,2), hem estudiat les seves 
intraculars, analitzant-ne les contribucions al forat de Coul-
son. Hem aplicat aquesta anàlisi a diferents sistemes —‌com 
l’àtom d’heli, de liti i de beril·li— i també a molècules diatòmi-
ques —‌com l’hidrogen i el dímer d’heli— a distàncies interatò-
miques diferents [26-29], cosa que ens ha permès estudiar rè-
gims de correlació diversos. D’aquesta manera hem pogut 
separar la correlació electrònica segons la distància interelec-
trònica i analitzar la contribució de la correlació dinàmica i la 
no dinàmica a cada una de les separacions.

Segons el que hem pogut observar, ρ2
cI(1,2) —‌que, per simplifi-

car la notació, a partir d’ara anomenarem cI— representa prin-
cipalment la correlació no dinàmica a distàncies interelectrò-
niques llargues, fet que reflecteix diferències entre la densitat 
exacta i la HF, típicament importants en sistemes amb múlti-
ples configuracions electròniques significatives, també cone-
guts com a sistemes multireferencials. Aquests casos aparei-
xen quan tenim orbitals degenerats o molt propers en energia, 
com, per exemple, en molècules dissociades i radicals. En 
aquests casos, hi ha diferents configuracions electròniques 
que contribueixen d’una manera important a la funció d’ona 
total, la qual cosa es tradueix en una diferència més gran en-
tre la densitat exacta i la densitat HF. Això fa que cI, que es 
correspon amb la diferència entre una matriu reduïda de pri-
mer ordre exacta i de HF, adopti valors grans.

El cumulant, ρ2
cII(1,2) —‌que, a partir d’ara, anomenarem cII—, 

descriu la correlació electrònica que hi incloem quan explíci-
tament afegim més d’un determinant de Slater a la funció de 
parells, i representa la part dinàmica de la correlació (que 
apareix a tots els sistemes amb més d’un electró i s’associa 
amb les interaccions instantànies entre càrregues negatives 
que es repel·leixen entre si), encara que també conté bona 
part de la correlació no dinàmica a distàncies curtes, la part 
més significativa energèticament.

Càlcul analític de la molècula d’hidrogen

Per entendre millor com funcionen el forat de Coulson i els 
seus components cI i cII, hem estudiat un sistema simple (la 
molècula de H2) amb una base petita que permet fer els càlculs 
analíticament i obtenir expressions explícites per a les intra-
culars i el forat de Coulomb en funció de la distància inter
atòmica i del coeficient c0 (que defineix el pes del determi-
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nant de HF). La funció d’ona FCI d’aquest sistema ve donada 
per l’equació següent: 
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Els detalls sobre la construcció d’aquestes funcions es presen-
ten a l’apèndix. Estudiant la molècula de H2 amb diferents va-
lors de c0 i de la distància interatòmica, podem analitzar di-
versos règims de correlació i observar com varien el forat i els 
seus components.

Comencem amb la molècula en la seva geometria d’equilibri. 
Si optimitzem la funció d’ona exacta, composta per dos deter-
minants de Slater multiplicats pels coeficients c0 i 

2
1 01c c   

(imposant la normalització 2 1
i i
c  ), el valor òptim que mi-

nimitza l’energia és c0 = 0,9943 [30]. Si representem les intra-
culars i els forats de Coulson amb aquests valors, obtenim el 
següent (figura 8):

Figura 8.  Intraculars (a dalt) i forats de Coulson (a baix) per a la molècula de H2 en 
equilibri, calculats analíticament amb una base STO-3G. Elaboració pròpia.

La figura 8 mostra que la distribució dels parells d’electrons és 
molt similar per a les tres densitats de parells. Tal com s’espe-
rava, la funció d’ona de HF concentra els electrons a distàn-
cies més curtes, mentre que la inclusió del segon determinant 
separa lleugerament els electrons. La densitat de parells apro-
ximada amb l’equació 10 reprodueix la intracular de HF a dis-
tàncies curtes, però s’ajusta millor a la funció exacta a distàn-
cies més llargues.

De l’anàlisi del forat de Coulson i els seus components (gràfi- 
ca inferior de la figura 8), s’observa que la contribució més 
important al forat total correspon al terme cII (el cumulant), 
mentre que cI contribueix principalment augmentant la densi-
tat de parells a distàncies llargues.

Si reduïm el valor de c0, augmentem el pes del determinant on 
els dos electrons es troben excitats, transferint càrrega elec-
trònica cap a aquesta segona configuració. La figura 9 mostra 
els resultats per a c0 = 0,707, que assigna el mateix pes als 
determinants de l’estat fonamental i de l’estat excitat:

Figura 9.  Intraculars (a dalt) i forats de Coulson (a baix) per al H2 en equilibri amb 
c0 = c1 = 0,707, amb la base STO-3G. Elaboració pròpia.
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A les intraculars, observem que les tres funcions canvien sig-
nificativament. La intracular de HF es manté exactament 
igual que en la figura anterior, mentre que la de FCI distri-
bueix els parells d’electrons a distàncies més grans. La intra-
cular SD, com abans, s’ajusta a HF a distàncies curtes i a FCI  
a distàncies llargues.

Pel que fa als forats, ara la contribució de cI esdevé més relle-
vant en comparació amb el cas anterior. El component cII con-
tinua dominant a distàncies curtes (reduint la densitat de pa-
rells), mentre que cI redistribueix aquesta densitat cap a 
distàncies llargues.

Analitzem ara el cas dissociat, amb una separació de 4 bohr 
entre els dos àtoms (figura 10). En aquest cas, el coeficient 
que minimitza l’energia de la funció d’ona exacta és també 
c0 = 0,707.

Figura 10.  Intraculars (a dalt) i forats de Coulson (a baix) per a la molècula de H2 
dissociada (R = 4 bohr). Elaboració pròpia.

Amb això es posa de manifest una de les principals limitacions 
de HF: la incapacitat per separar correctament els parells 

d’electrons. Com que només disposa d’un determinant, HF no 
té flexibilitat per evitar que els dos electrons es concentrin en 
el mateix àtom, i apareix un primer pic a distàncies curtes 
(gràfica superior de la figura 10). Tanmateix, en la dissociació, 
cada àtom hauria de quedar-se amb un sol electró i, per tant, 
la funció exacta només mostra un pic a la distància interatò-
mica. Per a c0 = 0,707, la funció d’ona reparteix el pes entre 
l’estat fonamental i l’excitat, de manera que permet la trans-
ferència de càrrega i facilita la separació dels parells, fet que 
dona com a resultat l’eliminació del pic curt de la intracular 
de HF a distàncies petites.

La intracular SD, igual que HF, presenta un primer pic a dis-
tàncies curtes, però també reprodueix el pic de FCI a distàn-
cies llargues. Aquest comportament es reflecteix clarament  
en els components del forat: cI domina a distàncies llargues, 
mentre que cII corregeix l’excés de densitat a distàncies curtes 
(vegeu la gràfica inferior de la figura 10).

Si relacionem cI i cII amb els tipus de correlació, podem dir que cI 
és sensible a la correlació no dinàmica (i pot emprar-se com a 
indicador d’aquesta [31]), ja que apareix en situacions amb de-
generació o quasi degeneració. En canvi, cII conté components 
tant de correlació dinàmica com de correlació no dinàmica: re-
presenta l’efecte de la correlació no dinàmica a distàncies cur-
tes i, com hem vist en el cas del H2 en equilibri, inclou la corre-
lació dinàmica deguda a la repulsió electró-electró [26, 28].

Conclusions i perspectiva de futur
La funció intracular de densitat de parells ens proporciona 
una eina fonamental per comprendre i quantificar la correla-
ció electrònica en sistemes químics, ja que descriu la probabi-
litat de trobar dos electrons separats per una certa distància, 
fet que ofereix una descripció més explícita de les interac-
cions electròniques que la densitat electrònica convencional.

Aquesta funció està relacionada amb indicadors de correla- 
ció electrònica que permeten quantificar tant la correlació  
dinàmica com la no dinàmica en sistemes moleculars. Entre 
aquests, destaquen els indicadors Ind i Ind

màx proposats pel nos-
tre grup [31-34].

Més enllà de la seva utilitat com a eina d’anàlisi, la funció in-
tracular té una importància estratègica en el desenvolupa-
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ment de nous mètodes computacionals, especialment, dins la 
teoria del funcional de la densitat (DFT, de l’anglès density 
functional theory). La funció de densitat de parells electrò- 
nics està connectada formalment amb l’energia de bescanvi-
correlació de DFT, a través del formalisme de la integració so-
bre el paràmetre d’acoblament adiabàtic (ACFDT, de l’anglès 
adiabatic-connection fluctuation-dissipation theorem). Una 
modelització precisa de la funció intracular en diferents rè-
gims de separació electrònica —‌tant per a distàncies curtes 
com llargues— pot permetre el disseny de nous funcionals  
de bescanvi-correlació més robustos i universals, capaços de 
descriure sistemes en els quals predomina la correlació no di-
nàmica, però també sistemes en què principalment hi ha una 
correlació dinàmica.

Actualment, un dels grans reptes en DFT és la falta de funcio-
nals generalistes que descriguin d’una manera precisa siste-
mes de naturalesa electrònica diversa. L’estudi acurat de la 
funció intracular s’identifica com una via prometedora per su-
perar aquestes limitacions, que pot contribuir a la creació de 
nous funcionals híbrids, de separació de rang o explícitament 
dependents de dues partícules. Aquesta línia d’investigació és 
especialment rellevant per al desenvolupament de la química 
computacional i de la física de materials complexos.

En resum, el futur de l’estudi de la funció intracular es presen-
ta molt prometedor, tant per aprofundir en la nostra com-
prensió fonamental de la correlació electrònica com per mi-
llorar els mètodes de càlcul que fem servir diàriament. La seva 
anàlisi ens permet no només entendre millor els mecanismes 
d’interacció electrònica, sinó també avançar cap a una quími-
ca computacional més precisa, predictiva i universal.

Apèndix
A continuació, es descriu el procediment per obtenir les fun-
cions d’ona analítiques de la molècula d’hidrogen segons els 
mètodes HF, FCI i l’aproximació de la funció d’ona amb un sol 
determinant (SD). També es deriven les intraculars correspo-
nents a aquestes funcions d’ona, així com els components del 
forat de Coulomb de manera analítica, els quals es represen-
ten a les figures 8, 9 i 10 de l’article. Comencem estudiant les 
funcions intraculars de la molècula d’hidrogen a distàncies 
interatòmiques diferents. Per cada àtom d’hidrogen, a les po-
sicions RA i RB, respectivament, centrem un orbital atòmic de 

tipus s (solució d’un electró de l’equació de Schrödinger) 
aproximat amb una funció gaussiana de la forma:

	
  2( )

AA Ss N e   Ar Rr
	

(A1)

	
  2( ) ,

BB Ss N e   Br Rr
	

(A2)

on NSA
 i NSB

 són els factors de normalització, r és el vector amb 
les coordenades (x, y, z) de l’espai i RA és la posició de l’àtom A. 
Aquesta base de només dos orbitals atòmics és tan petita que 
es considera la base mínima per a un sistema de dos electrons, 
i, tanmateix, és prou adequada per a una descripció qualitati-
va de la dissociació de la molècula de H2 [30]. 

El següent pas és construir els orbitals moleculars per a 
aquest sistema. En aquest cas en què només hi ha dos orbitals 
atòmics, podem construir dos orbitals moleculars:
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(A4)

on SAB és la superposició entre els orbitals atòmics SA i SB. 

Aquests orbitals moleculars només descriuen la posició de 
l’electró, i no l’espín. Per això, a partir d’aquests dos orbitals 
moleculars construïm els espín-orbitals, que descriuen la po-
sició i l’espín de cada electró:

	
     11g g    1r 	

(A5)

	
     11g g    1r 	

(A6)

	
     11u u    1r 	

(A7)

	
     11 .u u    1r 	

(A8)

Per exemple, l’espín-orbital ϕg(1) representa l’electró 1 amb 
espín α a l’orbital molecular enllaçant.

Un cop definits els orbitals moleculars, podem escriure les di-
ferents funcions d’ona que representen el sistema. Per repre-
sentar la funció d’ona HF (la funció aproximada més simple 
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per a un sistema fermiònic) d’un sistema de dos electrons 
d’espín diferent, només ens cal l’orbital molecular enllaçant, 
on posem un electró amb espín alfa i l’altre, amb beta:
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   
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(A9)

Ara construïm la funció d’ona exacta per a la nostra base afe-
gint el determinant de Slater, que representa la configuració 
on tenim els dos electrons en l’orbital antienllaçant (ϕu). Hi ha 
més configuracions electròniques possibles tenint un electró a 
l’orbital enllaçant i l’altre a l’antienllaçant (les excitacions 
monoelectròniques), però no es barregen a la funció d’ona 
exacta degut a la simetria dels orbitals:
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(A10)

Per a les densitats de parells, només hem de multiplicar les 
dues funcions d’ona al quadrat. En aquest cas, no ens cal fer 
la integral de cap coordenada ja que només tenim dos elec-
trons.

	     HF HF 2
2

1,2 | 1,2 |
	

(A11)

	     FCI FCI 2
2

1,2 | 1,2 | .
	

(A12)

Finalment, podem calcular la funció de parells aproximada 
amb la densitat exacta:

	        SD 2
2 1

1,2 1 2 | 1;2 | .    
	

(A13)

Ara podem calcular la funció intracular de cada densitat de 
parells integrant les coordenades 1 i 2 amb la delta de Dirac, 
que fixa 1 i 2 a la mateixa distància:

	
     HF HF

2 121 2  1,2I s d d r s  
	

(A14)

	
     SD SD

2 121 2  1,2I s d d r s  
	

(A15)

	
     FCI FCI

2 121 2  1,2 ,I s d d r s  
	

(A16)

on, en aquest cas, integrant d1 i d2 hi incloem la integral so-
bre l’espín i també la integral angular, passant directament de 
la densitat de parells a la funció intracular radial.
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