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Summary. Wine can contain trace amounts of ethyl carbamate (EC), a carcinogen formed when ethanol reacts with car-

bamyl compounds such as citrulline. EC is produced from arginine by lactic acid bacteria (LAB), e.g., Lactobacillus and

Pediococcus. Although the amounts of EC in wine are usually negligible, over the last few years there has been a slight but

steady increase, as climate change has increased temperatures and alcohol levels have become proportionately higher, both

of which favor EC formation. In this study, resting cells of LAB were used to evaluate the effects of ethanol, glucose, malic

acid, and low pH on the ability of non-oenococcal strains of these bacteria to degrade arginine and excrete citrulline. Malic

acid was found to clearly inhibit arginine consumption in all strains. The relation between citrulline produced and arginine

consumed was clearly higher in the presence of ethanol (10–12 %) and at low pH (3.0), which is consistent with both the

decreased amount of ornithine produced from arginine and the reduction in arginine degradation. In L. brevis and L. buchneri
strains isolated from wine and beer, respectively, the synthesis of citrulline from arginine was highest. [Int Microbiol 2011;

14(4):225-233]

Keywords: Lactobacillus · Pediococcus · arginine · ethyl carbamate · wine

Introduction

Wine, like most fermented foods and beverages [37], con-

tains trace amounts of ethyl carbamate (EC) [21], also

referred to as urethane. EC can bind covalently to DNA and

is therefore a carcinogen to animals [26]. It is formed at low

pH by the reaction between ethanol and N-carbamyl com-

pounds, such as urea, citrulline, and carbamyl phosphate,

with formation dependent on reactant concentrations [22]. As

this reaction is favored by high temperatures [29], EC content

is higher in wines that have been stored for a long time under

conditions in which the temperature has been poorly con-

trolled [35]. Although EC concentrations in wine are usually

negligible (< 10 μg/l), since 2002, in parallel with climate

changes, a slight increase has been determined [20], since

higher temperatures give rise to higher ethanol levels, both of

which favor EC formation. This trend has evidenced the need

for control and research on the mechanisms of EC formation.

Urea produced by yeast is the main potential EC precur-

sor in wine, but lactic acid bacteria (LAB), mainly spoilage

strains, can contribute to EC formation as well, due to their

production of citrulline and carbamyl-P from arginine [2,12].

Furthermore, significant levels of EC found in some wines

have been correlated with the former presence of LAB [35].

L-Arginine is one of the main amino acids in grapes and wine

[11] and it is known to be degraded by some wine LAB [13].

Arginine catabolism by these LAB involves the arginine

deiminase (ADI) pathway [14,18], which includes three
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enzymes, ADI (EC 3.5.3.6), ornithine transcarbamylase (EC

2.1.3.3, OTC), and carbamate kinase (EC 2.7.2.2, CK) [13],

catalyzing the following reactions:

L-arginine + H2O       → L-citrulline + NH3

L-citrulline + Pi        ↔ L-ornithine + carbamyl-P

carbamyl-P + ADP ↔ ATP + CO2 + NH3

This pathway is thought to contribute positively to the

growth and viability of LAB through ATP formation and the

decrease in acidity caused by ammonium production [32].

Nevertheless, this has not been confirmed for Oenococcus
oeni, the main malolactic bacteria in wine. In fact, arginine

and citrulline do not stimulate the growth of some strains of

this species in wine, in contrast to the growth of

Lactobacillus buchneri [31]. In general, however, the degra-

dation of arginine yields citrulline, which can react with

ethanol to form EC. Moreover, the ADI pathway is some-

times indirectly related to the production of biogenic amines,

specifically putrescine, which can be produced from

ornithine by LAB [10,17].

Wine lactobacilli vary in their ability to degrade arginine.

All heterofermentative lactobacilli are degradative [1,15]. In

particular, Lactobacillus hilgardii plays a major role in fer-

mented beverage spoilage, and those strains isolated from

wine have been shown to degrade arginine [34,36]. Different

strains of Lactobacillus brevis and L. buchneri isolated from

wine have also been shown to degrade arginine [12].

While presumably facultative heterofermentative lacto-

bacilli from wine are unable to degrade arginine [7,13], some

Lactobacillus plantarum have been shown to consume argi-

nine by means of the ADI pathway [1,28]. Likewise,

homofermentative pediococci isolated from other fermented

foods (beer, cheese, sausages) can degrade arginine [15], and

we have found that some strains of Pediococcus pentosaceus
isolated from wine also degrade this amino acid [1].

Although O. oeni is the main species responsible for malo-

lactic fermentation (MLF) [9,38] and can degrade arginine

[1,3,34], other LAB may proliferate during the early stages of

MLF, or later if the conditions are propitious, such as when

the acidity is low [16]. 

Some LAB, mainly Pediococcus and Lactobacillus, are

also known to be spoilage microorganisms for beer [25].

Beer’s acidic pH and ethanol conditions, similar to those of

wine, are suitable for the production of EC precursors by

these bacteria. Although the metabolic activity of LAB is

influenced by ethanol, very little information is available

regarding ethanol’s influence on the activity of the arginine

deiminase pathway in these LAB species, so such that their

potential to degrade arginine in wine and beer is poorly

understood.

The aim of this study was to determine the effects of

ethanol, glucose, malic acid, and low pH values on the abili-

ty of LAB found mainly in wine to degrade arginine and to

excrete citrulline, ornithine, and ammonia. We focused on

those species considered responsible for spoiling wine (and

beer), and therefore did not include O. oeni, the main species

for MLF in wine. Moreover, arginine degradation and the

metabolism and genetics of the ADI pathway are already well

known in this species [4,12,15,19,31–33,39], and no effect of

ethanol on arginine degradation has been reported [4], while

pH values lower than 3.5 have been found to inhibit arginine

consumption [30].

This study was based on LAB resting-cell experiments, in

which the bacteria were grown in a complex medium and

then prepared as highly concentrated cell suspensions in a

defined medium for further analysis. 

Materials and methods

Microorganisms and growth conditions. A pair of strains was

used for each of the four different species of LAB frequently found in wine.

Each pair consisted of the corresponding type culture strain (Lactobacillus
brevis 4121T, Lactobacillus hilgardii 4786T, Lactobacillus buchneri 4111T

and Pediococcus pentosaceus 4695T) and another strain isolated from wine

(L. brevis 3824, L. hilgardii 4681 and P. pentosaceus 4214) or beer (L. buch-
neri 4674). All strains were from the CECT (Spanish Type Culture

Collection, Valencia, Spain), except L. brevis 3824 and P. pentosaceus 4214,

which were kindly contributed by S. Ferrer (Enolab, University of Valencia,

Spain).

All strains were grown anaerobically at 27 ºC in MRS medium [6] sup-

plemented with 4 g DL-malic acid/l and 5 g D(–)-fructose/l. Bacterial growth

was measured by determining the OD600 of the bacterial suspension and by

direct cell counts with a Neubauer chamber.

Culture condition and resting cells experiments. Each strain

was grown anaerobically in 500 ml of MRS medium supplemented with 5 g

L-arginine/l, at 27 ºC, to the late-exponential/early-stationary phase. The

cells were then harvested by centrifugation at 6000 ×g for 5 min at room

temperature. The procedure for resting-cell experiments was designed based

on that of Mira de Orduña et al. [18]. Cell pellets were resuspended in appro-

priate amounts of resting-cell buffer and transferred to small glass vials con-

taining an aqueous solutions of 0.5 g arginine/l, at pH 3.6 (control assay,

without ethanol or glucose or malic acid). The other conditions assayed with

the same arginine concentration differed with respect to pH (3.0, 4.0, and

4.5), concentration of added ethanol (0, 5, 10, and 12 %), and amount of
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added glucose (0.5, 3.0, and 5.0 g/l), or L-malic acid (0.5 and 2.0 g/l). Assays

were also performed with increasing concentrations of arginine (1.5, 3.0, and

5.0 g/l) and the same control conditions. The glass vials were placed in a

water bath (25 ºC) and stirred gently. Samples were taken periodically, cen-

trifuged at 13,000 ×g for 5 min, and the supernatants were frozen and kept

at –20 ºC until analyzed.

Analyses of amino acids and ammonia. An HPLC method

based on one previously described [8,27] was adapted to improve the reso-

lution of the three peaks of the amino acids of interest. The analyses were

carried out on an Agilent 1100 series HPLC (Agilent Technologies,

Wilmington, DE, USA) equipped with an automatic sampler system. The

samples were filtered through a 0.45-μm membrane (Millipore) before injec-

tion. Two μl of each sample was mixed with 5 μl of borate buffer 0.4 M at

pH 10.2, 1 μl of L-norvaline (internal standard), and 1 μl of the derivatiza-

tion agent o-phthaldehyde-3-mercaptopropionic acid (OPA-3-MPA). One μl

of this mixture was injected into a 4.0 × 250 mm ID column filled with

Hypersil-ODS (Agilent Technology), with a 4 mm × 5 μm guard-column

packed with the same phase. 

Separation of the amino acids under study took 30 min at a flow rate of

1.5 ml/min. The mobile phase was composed of two different solvents: A

and B. Solvent A was a mixture of 2.2 g of sodium acetate (Sigma), 220 μl

triethanolamine (TEA, Sigma), and 6 ml tetrahydrofurane (Aldrich). After

mixing, the pH was adjusted to 7.2 with 1 % acetic acid. Solvent B was a

mixture of 1.8 g sodium acetate (Sigma), 320 ml of methanol (Panreac), and

400 ml of acetonitrile (Panreac), with the pH adjusted to 7.0 with 1 % acetic

acid. The gradient was 100 % A for 7.5 min, 10 min with 15 % B, 1 min with

60 % B, 2 min more at 100 % B, and ending with 100 % A for 5 min, in order

to prepare the column for the next sample. The analysis temperature was set

at 40 ºC.

Amino acids were detected using the retention time established for the

individual amino acids and for a mixture thereof. The linearity of the peak

areas for each amino acid was determined for different concentrations,

ranging from 0 to 1000 μM. Calculations were based on the area under the

peak established for a given amino acid of known concentration and nor-

malized with the internal standard. Ammonia was quantified with an enzy-

matic kit from Boehringer-Mannheim (Roche Pharma GmbH, Darmstadt,

Germany).

Statistical analyses. Data univariate (ANOVA) and multivariate

(PCA) analyses were conducted using SPSS version 17.0 (SPSS Inc.,

Chicago, IL, USA). Variable means showing statistic significance were com-

pared using Scheffé post-hoc comparisons at a significance level of 0.05,

after testing the homogeneity of variance assumption between the various

groups. Principal component analysis (PCA) with varimax rotation was per-

formed for all the samples (408 samples: 4 species × 2 strains × 3 replicates

× 17 conditions). The observed variables were the ratios between ornithine

and arginine (Orn/Arg), between citrulline and arginine (Cit/Arg), and

between ammonium and arginine (NH4/Arg), as well as the percentage of

arginine degradation (Arg %), and final pH. The experiments were per-

formed in a laboratory that complies with ISO 9001 standards.

Results

Approximately 109 cells per ml were obtained from the

strains grown in MRS medium and harvested at OD 1.0 as

determined by direct counts. Measurements of total arginine

degradation are presented with respect to the specific group,

defined according to the examined conditions, with the

results for the different strains shown in the same group (Fig. 1).

The data obtained under all the conditions are not shown, in

order to facilitate a visual analysis of the results. Arginine

(0.5 g/l) was almost fully degraded (70–100 %) in most of the
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Fig. 1. Box-and-whiskers plot of the effect of

different conditions on the degradation of argi-

nine (0.5 g/l) for all assayed strains. The con-

trol assay was performed at pH 3.6. Malic:

presence of L-malic acid (0.5 and 2.0 g/l) in the

assay. Ethanol: presence (5, 10, and 12 %) in

the assay. Glucose: presence (0.5; 3.0 and 5.0

g/l) in the assay. The assays plotted at pH 3 and

pH > 4 (4 and 4.5) were without ethanol or glu-

cose or malic acid. The line in the box is the

median; the lower whisker is the minimal

value found; the upper whisker the maximal

value. Circles are the outliers with values

greater than 1.5 times the spread outside.
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experiments. The strain with the highest levels of arginine

consumption was, under most conditions, L. hilgardii 4681,

with values exceeding 95 %. 

Slightly higher consumption was observed for all the

strains upon increasing pH whereas consumption was lower

in the presence of ethanol. The presence of glucose also

decreased arginine degradation. The only condition in which

arginine was not consumed at all was in the presence of L-

malic acid. When 0.5 or 2 g L-malic acid/l was added to the

resting cells, the degradation of the initial 0.5 g arginine/l was

nearly zero. When the initial arginine concentration was

increased from 0.5 to either 1.5, 3, or 5 g/l (results not shown

in figures), good consumption rates were noted for all the

tested strains, with a few lower degradation values, progres-

sively decreasing to 60 % at higher arginine levels, but also a

higher total quantity of arginine consumed. Degradation rates

were somewhat higher than those of the controls.

The amounts of citrulline, ornithine, and ammonium pro-

duced are expressed in relation to the arginine consumed, as

determined by means of PCA (Fig. 2). The percentage of

arginine degradation and the final pH obtained under different

conditions were also used in the factorial analysis. Factor 1

explained 40.7 % of the variation and was marked by high

positive loadings for Orn/Arg, Arg %, and final pH. This

result implies that higher levels of ornithine production led to

higher final pH values. On the other hand, factor 2, which

still explained 22.4 % of the variation, was marked by a high

positive loading for Cit/Arg, which could be related to the

high citrulline production by the strains. In relation to the

third component (not shown), factor 3 explained 20.4 % of

the total variation and was marked by a high positive loading

for NH4/Arg (0.900). To facilitate the interpretation of these

results, the obtained scores were plotted by selecting the first

two factors as axes (Fig. 2). As shown, the samples basically

clustered in two groups. The first cluster (bottom left corner)

represents the non-degradation of arginine in the presence of

malic acid, regardless of the strain tested, and the second

cluster represents the clear tendency of some species to alka-

linize the medium when ornithine (but not citrulline) was

produced from arginine. Depending on the experimental con-

ditions (ethanol, glucose, low pH values or increasing

amounts of arginine), the strains used in this study showed

different arginine-consuming behaviors. 

We obtained values of Cit/Arg ranging from 10 % to 50 %,

as shown in Fig. 3 for strain L. hilgardii 4786T as an exam-

ple. At higher pH, less citrulline was excreted and more
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Fig. 2. Plot values of the first two factors

(Factor 1 and Factor 2) of the PCA analy-

sis according to the experimental condi-

tions for the 408 samples. Kaiser-Meyer-

Olkin (KMO): 0.803; variance of Factor 1:

40.7 %; variance of Factor 2: 22.4 %.

Factor 1 positively correlated with Orn/

Arg (0.930), Arg % (0.733) and final pH

(0.719). Factor 2 positively correlated

with Cit/Arg (0.710).
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ornithine and ammonium were obtained. The ammonium

/arginine ratio was expressed as 2 moles of NH4

+ per mole of

arginine, because if all arginine were degraded then one mole

of it would yield two moles of NH4

+. 

A higher-level production of citrulline occurred when the

quantity of ethanol was increased, which, in turn, led to lower

values of Orn/Arg and NH4

+/Arg. The maximum ratio of

Cit/Arg was obtained at 12 % ethanol. Increased glucose did
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Fig. 3. Ratios of products from arginine degraded by Lactobacillus hilgardii 4786T under different conditions: citrulline

(black), ornithine (diagonal stripes), ammonium (× 2) (dotted). Percentages of degraded arginine are indicated with dia-

monds. Data represent the mean of three samples ± SD.

Fig. 4. Ratios of citrulline produced from arginine by different strains of LAB (see Materials and methods) under these

conditions: without ethanol at pH 3.0 (black columns); without ethanol at pH 3.6 (control, dotted columns); without

ethanol 12 % at pH 3.6 (gray). Data represent the mean of three samples ± SD.
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not have as clear an effect as the other conditions, although

there was a slight tendency towards lower values of Orn/Arg

and H4

+/Arg. Thus theoretically, higher relative production of

citrulline would be expected with increasing amounts of glu-

cose.

In addition to these effects of pH, ethanol, glucose, and

malic acid, the Cit/Arg values for all eight strains together

(Fig. 4) was determined under the conditions that had the

most significant effect, i.e., low pH and high ethanol, in order

to compare all the strains. As Fig. 4 shows, strains L. brevis
3824 and L. buchneri 4674 produced the most citrulline in

relation to arginine consumed. For all the strains, more cit-

rulline was produced at pH 3 than at pH 3.6 (control), and in

the presence of 12 % ethanol than in its absence.

A clear and logical relationship between a higher initial

and higher final pH was found for all the strains (results not

shown). Lower final pH values were recorded in the presence

of higher quantities of ethanol, which correlates with the

higher citrulline and lower ammonium production. When the

percentage of glucose was higher, the final pH was lower,

consistent with the reduced production of ammonium in

these assays. Generally, higher final pH values were

observed for all the strains of L. hilgardii and L. buchneri.
In addition to the data presented above, corresponding to

2-h resting-cell experiments, analyses were conducted at 0 h

and at 1 h in order to study the kinetics of the different com-

pounds. In all cases, the kinetics showed a linear decrease in

arginine and increases in citrulline, ornithine, and ammoni-

um. As examples, Fig. 5 shows the results obtained for the

four strains, one of each species, in the presence of 12 %

ethanol. In some cases, as noted above for L. buchneri 4674,

an initial increase of citrulline was followed by a subsequent

decline in the last hour of the experiment. 

The degradation rates for arginine were calculated based

on the data obtained at 0 and 2 h. In the control assays, the

values ranged from 19.96 μM of arginine degraded per min for

L. brevis 4121T to 25.19 μM per min for L. hilgardii 4681. The

degradation rates were higher in the isolated strains than in the

type strains. The rates were slightly lower than those of con-

trols under conditions of lower pH or more ethanol, for all

Fig. 5. Time evolution of arginine (solid squares), citrulline (empty circles), ornithine (triangles), and ammonium (crosses) in

assays of resting cells and in the presence of 12 % ethanol. The strains used were Lactobacillus brevis 3824, L. buchneri 4674,

L. hilgardii 4681 and Pediococcus pentosaceus 4214. Data represent the mean of three samples ± SD.
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strains. Thus, in the presence of 12 % ethanol, the rate of argi-

nine degradation was 18.54 μM per min for L. brevis 4121T

and 20.89 μM per min for L. hilgardii 4681.

Discussion

The resting-cell experiments performed in this study, like

those in other works [18], have several advantages: they

avoid the presence of other compounds that could interfere

with the experiment; they are an easy way to monitor degra-

dation kinetics; and, compared to growth experiments, they

can be established in very little time under conditions similar

to those of wine. The strains used in this work were previous-

ly shown to degrade arginine when grown in MRS medium [1].

These strains were able to degrade 60–90 % of 5 g arginine/l in

less than 2 h. All the strains of heterofermentative lactobacilli

used in this study (L. brevis, L. hilgardii and L. buchneri)
degraded almost all the arginine, as expected. The degradative

ability of P. pentosaceus was also demonstrated, confirming the

results obtained in growth medium [1].

The only condition under which arginine was not degraded

was in the presence of malic acid. As shown in other works

[19,30], malic acid degradation seems to take priority over

arginine consumption for LAB. It may be that since MLF

involves just one reaction, the consequent rapid production of

ATP is more advantageous than the more complex and

inducible ADI pathway of arginine utilization. From a techno-

logical point of view, MLF could be used to control the appear-

ance of citrulline from arginine, as reported previously [30].

In spite of a low initial pH, arginine degradation

increased during the assays, with final pH values ranging

from 5.0 to 7.0 due to the production of ammonia from the

degraded arginine. A similar increase in pH, by around 2.5

units, was recorded in assays with different initial pH values,

ranging from 3.0 to 4.0, and a similar quantity of ammonia

was accordingly produced.

Good inverse correlations between the values of Cit/Arg

and Orn/Arg (Fig. 3, for L. hilgardii 4786T) were found in the

different assays. The former was higher when the second was

somewhat lower, due to the conversion of citrulline to

ornithine. The molar ratio of ammonium per arginine is usu-

ally higher (expressed as 2× in the figures) due to the appear-

ance of two ammonium molecules for each one arginine (see

the Introduction).

The relation between citrulline produced and arginine

consumed ranged from 10 % to 50 %, depending on the strain

and the conditions. In a previous work with resting cells, val-

ues around 5 % were reported [18], and in a more recent

study of wine, the maximum was 4–5 % [30]. However, in

yet other studies values of near 40 % were obtained for

strains of L. hilgardii [34], and around 30–40 % for strains of

O. oeni [24]. Thus, there seems to be great variability

depending on the species and the different conditions.

These ratios can be used to estimate the contribution of

citrulline to the EC precursor pool from a given amount of

initial arginine, as suggested by Mira de Orduña et al. [19].

Of all the different conditions assayed, those that clearly

resulted in higher rates of citrulline production compared to

arginine consumption in all the strains (Fig. 4) included the

presence of ethanol. The Cit/Arg value increased significant-

ly when the ethanol concentration increased from 0 (control)

to 5, 10, and 12 %. At 12 % ethanol, the average increase in

the ratio in all the strains was ca. 85 %, with values ranging

from 44 % (L. brevis 4214T or L. buchneri 4674) to 173 % in

L. buchneri 4111T. Regarding the lower pH, a comparison of

the control (pH 3.6) with the assays carried out at pH 3.0

showed that the average increase in the Cit/Arg value was 29 %,

ranging from 6 % for L. buchneri 4674 to 43 % for L. hilgardii
4681.

Regarding the effect of ethanol, the higher Cit/Arg value

recorded here is consistent with the decreased Orn/Arg value.

There seemed to be less conversion of citrulline to ornithine,

accompanied by a decreased incorporation of arginine. The

exposure of cells to ethanol usually results in an increase in

their permeability and the concomitant loss of intracellular

material [5]. Therefore, it may have been the case that the

cells were less efficient at retaining citrulline, such that it

could easily escape. 

The higher value of Cit/Arg at low pH (3.0) is also con-

sistent with reduced arginine degradation. The release of

ammonium from the arginine-deiminase reaction, yielding

citrulline, would allow the cells to compensate for the exter-

nal acidity. 

The results obtained for the different species and strains

tested (Fig. 4) clearly show that strains of L. brevis and L. buch-
neri isolated from wine and beer, respectively, produced

higher yields of citrulline in relation to arginine consumed,

more than the type culture strains, which were isolated from

other environments. Therefore, an increased ability to pro-

duce citrulline might characterize strains genetically accus-

tomed to ethanol environments.

In most cases citrulline production was linear, although in

some strains, particularly L. buchneri 4674, a period of

increased synthesis was followed by a decline. This can be

interpreted as due to the excretion of citrulline, which was

ARGININE UTILIZATION BY LAB
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then reabsorbed by the cells and transformed into ornithine

and ammonia, as other authors have also postulated [12,18].

In most of the assays, there was a balance between

degraded arginine and the sum of the amount of citrulline,

ornithine, and ammonia produced. However, this was not the

case with L. hilgardii 4681, for which the sum of these prod-

ucts was less than the amount of arginine consumed. This

might be explained by the transformation of ornithine into

putrescine by ornithine decarboxylase, as described in O. oeni
[17] and in other LAB [23].

In conclusion, in this work we were able to demonstrate

the effects of both ethanol and low pH on a higher relative

production of citrulline compared to arginine consumed in

some species of LAB related to wine and beer. In addition,

the yields were found to depend on both the species and the

strain. Since these species are mainly related to spoilage, pos-

sible contaminations must be prevented with well-controlled

aseptic processes and through the use of starters that ensure

correct alcohol fermentation and of MLF, if required. This

should prevent the appearance of citrulline, and thus a poten-

tial source of EC. 
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