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Summary. Pleurotus ostreatus is an industrially cultivated basidiomycete with nutritional and environmental applications.
Its genome, which was sequenced by the Joint Genome Institute, has become a model for lignin degradation and for fungal
genomics and transcriptomics studies. The complete P. ostreatus genome contains 35 Mbp organized in 11 chromosomes, and
two different haploid genomes have been individually sequenced. In this work, genomics and transcriptomics approaches
were employed in the study of P. ostreatus under different physiological conditions. Specifically, we analyzed a collection of
expressed sequence tags (EST) obtained from cut fruit bodies that had been stored at 4°C for 7 days (postharvest conditions).
Studies of the 253 expressed clones that had been automatically and manually annotated provided a detailed picture of the life
characteristics of the self-sustained fruit bodies. The results suggested a complex metabolism in which autophagy, RNA
metabolism, and protein and carbohydrate turnover are increased. Genes involved in environment sensing and morphogene-
sis were expressed under these conditions. The data improve our understanding of the decay process in postharvest mush-
rooms and highlight the use of high-throughput techniques to construct models of living organisms subjected to different envi-
ronmental conditions. [Int Microbiol 2011; 14(2):111-120]
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Introduction

Pleurotus ostreatus (Jacq.: Fr) Kumm. (Dikarya, Basidiomy-
cota, Agaricomycotina, Agaricales) [29] is a white-rot, edible
fungus, and an active lignin degrader that lives as a sapro-
phyte on dead or decaying wood. It has been industrially cul-
tivated for food production [27], its health stimulating [6]

properties, the production of secondary metabolites of med-
ical interest [14] and enzymes for pulp bleaching [38], recy-
cling of agricultural wastes [1], and bioremediation process-
es [7]. The genome of P. ostreatus was sequenced at the Joint
Genome Institute (JGI, Walnut Creek, California, USA)
[http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_1.
home.html]. The two genomes present in the dikaryotic
strain N001 were sequenced individually, producing two
genomes corresponding to the two haplotypes of this strain.
These data, obtained after several preliminary studies of the
genome’s structure and the characteristics of this fungus
[23,31,35], expand upon classical molecular techniques applied
to the breeding of basidiomycetes [34].
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The identification of genes expressed under different
physiological conditions offers insight into the responses of
an organism to environmental stresses [32]. In the case of
edible mushrooms, postharvest is in itself a stress condition
of relevant economic impact [39]. These mushrooms are usu-
ally sold as living organisms but during the long postharvest
period they must survive on the basis of their own accumu-
lated resources. The molecular processes that take place in
postharvest mushrooms were preliminarily studied in the but-
ton mushroom Agaricus bisporus [5,13,21] but before the
advent of genomic and transcriptomic techniques.

In the present study, the available genomics and transcrip-
tomics resources were used to identify and analyze genes
enriched in 7-day-old P. ostreatus fruit bodies stored at 4°C.
Specifically, the metabolism taking place in the fruit bodies,
as deduced from the expressed genes, was investigated.

Materials and methods

Fungal strain and culture conditions. Pleurotus ostreatus dikary-
otic strain N001 and the two monokaryotic protoclones PC9 (accession num-
ber CECT20311) and PC15 (accession number 20312) [24] were used in this
study. The dikaryotic strain was cultured on wheat straw until the first fruit
flush. Once the fruit bodies had acquired their typical commercial size
(around 5 cm in diameter), the fruits were collected. Half of the harvested
material was used for mRNA purification while the rest of the harvest was
kept at 4°C in the dark with high humidity (80%) for 7 days and then
processed for mRNA.

Construction of cDNA library. Total RNA (10 μg) was extracted
from the fruit bodies using a protocol described elsewhere [36]. The
expressed sequence tag (EST) library enriched in postharvest clones (7-0
library) was produced by suppression subtractive hybridization as described
by Diatchenko et al. [10]. mRNA collected from the cold-stored material
was used as tester, and mRNA from the freshly cut fruit bodies as driver.

Genomic and transcriptomic analyses. The whole genome of the
two P. ostreastus protoclones and the annotation tools used in this work are
freely available at the Joint Genome Institute [http://genome.jgi-
psf.org/PleosPC15_1/PleosPC15_1.home.html]. Transcriptomics analyses
were carried out using a database of the transcriptome of P. ostreatus cultured
as monokaryons or dikaryons in rich SMY culture medium [25], and the
results analyzed with the SOLID platform (Applied Biosystems). For normal-
ization of the transcriptomics data, normalized values from the reads per kilo-
base exon model per million mapped sequenced reads (RPKM) were used [4]. 

Results and Discussion

Isolation of genes expressed in postharvest stress.
The subtracted mRNA was retrotranscribed into cDNA and
then cloned and sequenced using the classical Sanger method
with the M13D primer. From the 7-0 sample, 253 EST were
recovered. These were sequenced and then used as the query in
the identification of the corresponding transcripts. In a comple-

mentary control, mRNA from freshly cut fruit bodies was used
as tester and mRNA from 7-day cold-stored fruit bodies as driv-
er. The 253 EST from the 7-0 sample were sequenced; their
average size was 323.27 nucleotides (SD 128.24).

Genomic analysis of the genes expressed in post-
harvest stress 7-0. The EST 7-0 sample was used first in
a BlastN search against the complete nucleotide collection
(nr/nt database) of the National Center for Biotechnology
Information (NCBI), a division of the US National Library of
Medicine. The search produced hits for 26 EST and permit-
ted the identification of eight EST corresponding to riboso-
mal RNA genes mapping to scaffold (chromosome) 2.
Among the 18 EST with BlastN matches other than rRNA,
four were of particular interest. EST 70_363 and 70_489
were highly similar to genes coding for ubiquitin in
Coprinopsis cinerea (see below), and EST 70_306 and
70_420 hit NCBI database genes identified as P. ostreatus
mRNA regulated by blue-light stimulation (NCBI accession
number AB551986). These sequences did not appear in any
of the other basidiomycete sequenced genomes and thus
could be considered as P. ostreatus-specific. They coded for
gene model 167484, and mapped to scaffold 4.

The EST 7-0 sample was then used as query in a BlastN
search against the complete collection of the P. ostreatus
genome (PC15 v1.0) at the Joint Genome Institute portal
[http://genome.jgi-psf.org/PleosPC15_1/PleosPC15_
1.home.html]. With the 253 EST of the 7-0 sample used as
query, 272 hits with E-values ranging from 2.53E-01 to 0.0
were recovered. This was due to the combined effect of some
EST that failed to recover any PC15 hit (cloning contami-
nants) and to the occurrence of EST that recovered several
genes (corresponding to members of complex gene families).
As expected, none of the EST corresponding to rRNA recov-
ered any automatically annotated protein. Most EST (176)
retrieved only one PC15 v1.0 gene model, whereas two of
them (EST number 70_363 and 70_489, corresponding to
gene models 46579 and 185947, respectively) retrieved
seven different polyubiquitin genes containing four repeats
of the conserved ubiquitin domain.

To assign a single gene model to each EST when two or
more gene models were retrieved with the same EST, the one
with the lowest E-value and highest score was considered to
be the gene corresponding to that EST. Accordingly, in all
cases but one each EST could be assigned to a unique gene
model. The exception was EST 70_576, whose sequence
exactly matched that of four PC15 gene models (154568,
159877, 166420 and 168621) mapping to scaffolds 2, 7, 3,
and 6, respectively. Note that these four models were missing

RAMÍREZ  ET AL.



113INT. MICROBIOL. Vol.14, 2011

in the genome of PC9 and in all other available basid-
iomycete genomes. Moreover, as this sequence did not
retrieve any sequence either in BlastN or in BlastX searches
in the NCBI gene database, it was considered exclusive for
PC15. Since it was not possible to distinguish which of the
three models was retrieved by EST 70_576, the four models
were maintained as if they were expressed since none of
them fell into the gene clusters described below. Taking into
account the previous considerations, 212 different gene mod-
els were finally identified in this analysis.

Several EST can hit the same gene model, giving a rough
estimation of its expression frequency in the conditions under
study. Using the EST of the 7-0 sample, 157 different PC15
gene models were identified. The three with the highest
expression values were model 34610 (seven repetitions),
encoding a putative acetyl ornithine aminotransferase map-
ping to scaffold 9, and models 175868 and 156226 (six repe-
titions each), encoding two proteins mapping to scaffold 3
that are highly conserved in the PC9 and PC15 genomes but

not found in other available basidiomycete genomes. Model
175868 could be preliminarily annotated as a BEM46-like
protein (see below, Table 1) whereas no annotation could be
provided for model 156226.

The availability of the sequence of the whole P. ostreatus
genome and the high quality of the assembly of the PC15
genome allowed the scaffold position of the genes expressed
in the 7-0 stressed samples to be determined (Fig. 1). The 157
gene models in the 7-0 sample were distributed across 11 P. os-
treatus PC15 v1.0 scaffolds. To determine whether this distri-
bution was even across the genome, we calculated the number
of 7-0 enriched genes per chromosome per Mbp, which yield-
ed a global gene density of 4.12 genes per Mbp (S.D. 2.10).
Scaffolds 4 and 5 appeared to be slightly enriched in 7-0
genes (27 and 23 gene models corresponding to densities of
7.51 and 6.50 7-0 enriched genes per Mbp, respectively). By
contrast, scaffold 11 had a significantly lower 7-0 gene densi-
ty (1.35 genes per Mbp) and no 7-0 enriched genes were
found either in scaffold 12 or in the mitochondrial DNA. 
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Fig. 1. Positions of the 7-0 enriched genes shown with diamonds on each of the 11 Pleurotus ostreatus scaffolds. KOG annotation: red, metabolism; yel-
low, cellular processes and signaling; green, information storage and processing; blue, poorly characterized genes; and white, genes without KOG anno-
tation. The bars on top of the diamonds indicate the overexpression (log2) of the corresponding gene in dikaryons (blue bars) and monokaryons (red bars).
The clusters of genes are indicated by double arrowed lines. The numbers below these lines indicate the number of genes in the corresponding cluster. 
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For a finer analysis of the chromosome gene positions, a
sliding window of 0.5 Mbp was used; also, genes were con-
sidered to cluster whenever five or more 7-0 enriched gene
models fell into the window. Accordingly, eight gene clusters
were identified that grouped 52 of the gene models (33.1% of
the enriched models); these clusters could be placed in five
of the scaffolds. The most prominent gene cluster was found
on scaffold 3 and grouped nine gene models.

Functional analysis of the genes expressed in
postharvest stress 7-0. To obtain functional informa-
tion about the genes retrieved using the 7-0 EST sample, the
253 EST were submitted to a BLAST search against the
NCBI database, with the significance threshold of the E-
value set at < E-04. Under these search conditions, 156 hits
were recovered (hits recovering rRNA were excluded from
this study). The principal groups of genes identified with the
7-0 EST are listed in Table 1 (for complementary informa-
tion, ask authors). The EST were classified according to the
functions of their corresponding genes. 

The largest EST class corresponded to genes involved in
general and secondary metabolism (46 EST). Within this
group, genes coding for carbohydrate active enzymes (CAZy)
were predominant. These genes included members of differ-
ent glycosyl hydrolase families, a carbohydrate binding mod-
ule, and two genes involved in glucan metabolism. Three
other CAZy genes (corresponding to four EST) were includ-
ed in the cell structure and growth class since they are
involved in chitin metabolism. In total, the CAZy genes and
EST accounted for 15 EST and 14 gene models, indicating the
high relevance of this family under the studied conditions.

Three gene models were identified as directly related to
amino-acid and nitrogen metabolism. Given their recovery fre-
quency (eight EST), they are likely important for postharvest
mushroom metabolism. The metabolism of ornithine is espe-
cially relevant since a gene model for carbamoyl phosphate
synthase was also found among the 7-0 enriched genes along
with other gene models coding for ornithine aminotransferase.
In addition to these genes, others, such as gene model 26312
(corresponding to a cleft lip and palate associated transmem-
brane protein), have been associated with the metabolism of
arginine [15]. Five other EST retrieved a gene containing the
DUF323 domain (gene model 40078), which has been associ-
ated with formylglycine-generating enzymes [11].

Three gene models, encoding a catalase (four EST), an
aryl alcohol oxidase (one EST), and a copper radical oxidase
(one EST), were also retrieved. These genes are presumably
involved in the fungus’ ligninolytic activity [18,19,40],

which remains active during postharvest. Fourteen EST were
classified in the protein metabolism (synthesis and degrada-
tion) group, which contained eight EST retrieving genes
encoding proteases and protease-related enzymes.

In the nucleic acid metabolism group there were 11 EST.
Among them, gene models 44554 (coding for an argonaute-
like protein) and 44257 (coding for a pentatricopeptide repeat
protein) were of particular interest. Members of the arg-
onaute gene protein family interact with small non-coding
RNAs involved in RNAi gene silencing [20,30,41], while the
protein encoded by gene model 44257 belongs to the penta-
tricopeptide repeat-containing proteins involved in the main-
tenance of ribosomal RNA in yeasts [33]. These proteins are
probably related to different steps in RNA metabolism and to
the maintenance of intracellular organelles [37], especially
mitochondria [42]. The relevance of RNA metabolism under
the conditions studied in this work is further emphasized by
the presence of an EST corresponding to gene model 24106,
which encodes a member of the DEAD/DEAH box helicase
family implicated in most RNA metabolic processes [8,9,26],
and of another EST corresponding to model 186100, which
encodes another RNA helicase.

Within the group of EST classified as related to cell struc-
ture and growth, and in addition to the CAZy enzymes
described above, EST 70_68, corresponding to gene model
175868 and preliminarily identified as a BEM46 family pro-
tein, merits attention. This family of plant proteins includes
signal transducer/receptor proteins involved in the response to
stimuli such as gravity and light [28]. Note that EST 70_306
and 70_420 were annotated as corresponding to mRNA regu-
lated by blue light, which is considered to be essential for fruit
body development in these fungi [2]. A high rate of recovery
of fungal lectins was also obtained in this group of genes.

The group of genes involved in cellular signaling con-
tained 11 EST. The more abundant group corresponded to
Ras-like proteins, which are involved in cell polarity [17,22].
It was recently reported that a small Ras-like protein is
involved in the autophagy processes induced by starvation in
mammals [3]; an analogous response could be expected in
cut and stored fungal fruit bodies. Another gene of interest
within this group was retrieved by EST 70_190 (gene model
172262). It was preliminarily annotated as a TNFR/NGFR
gene encoding a member laminin of the cysteine-rich region
family protein. Interestingly, a similar gene, identified in rice,
is responsible for a major quantitative trait locus (QTL)
involved in grain characteristics [12].

The second largest group (23 members) of EST were
those classified as belonging to transport-related genes. The
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Table 1. Preliminary functional annotation based on the BlastX hits in the NCBI gene database

Gene ID Preliminary functional annotation Gene ID Preliminary functional annotation

General and secondary metabolism (46 ESTs) Protein metabolism (synthesis and degradation) (14 ESTs)

185768 1,2-dihydroxy-3-keto-5-methylthiopentene dioxygenase 31826 26S protease regulatory subunit 6B

42689 1,3-beta-glucan synthase 185944 60S ribosomal protein L14

19778 Alanine aminotransferase 26193 EF Tu GTP binding domain-containing protein

164890 Aryl alcohol oxidase 186121 Eukaryotic translation initiation factor 5A

43812 ATPase 35487 Peptidase M14

61627 Carbamoyl-phosphate synthase 185945 40S ribosomal protein S12

32832 Carbohydrate-binding module family 13 protein 185945 40S ribosomal protein S13

62309 Catalase 153610 Proline-specific peptidase

170071 Cephalosporin esterase 52559 ATP-dependent protease La

26312 Cleft lip and palate associated transmembrane protein 42347 Translation release factor 

186162 Copper radical oxidase variant A glyoxal oxidase 155735 Mitochondrial intermediate peptidase

162240 Cyclohexanone monooxygenase 156001 Polyubiquitin containing 7 ubiquitin monomers

41780 Dioxygenase 42347 Translation release factor

40078 DUF323 domain-containing protein

173106 Epoxide hydrolase 2
Transport (23 ESTs)

173859 FAD binding domain-containing protein 185815 ADP-ATP carrier protein 2, mitochondrial precursor

39461 Glucan 1,3 β-glucosidase 41688 APC Amino-acid permease

154880 GLycoside hydrolase family 15 protein 50967 Arabinose-proton symporter

41613 Glycoside hydrolase family 3 protein 14522 ATP-binding cassette transporter 

175036 Glycoside hydrolase family 31 protein 44692 Cation/H+ exchanger

43197 Glycoside hydrolase family 47 protein α-mannosidase 1 50923 Coenzyme A transporter 

175899 Glycosyltransferase family 15 protein 185815 Eukaryotic ADP/ATP carrier

164450 Glycosyltransferase family 22 protein 48688 Glyceroaquaporin

30539 Glycosyltransferase family 39 protein 155224 Major facilitator superfamily transporter

41463 IMP dehydrogenase 50790 Mitochondrial import inner membrane translocase

159066 NUXM, NADH-ubiquinone oxidoreductase subunit 47115 Multidrug/Oligosaccharidyl-lipid/Polysaccharide flippase

34610 Ornithine aminotransferase 158619 Phthalate transporter

34610 Ornithine-oxo-acid aminotransferase 22455 Plasma membrane H+-transporting ATPase

12746 Phosphatidylinositol phosphate phosphatase 25942 RTA1-like protein

170268 Phosphatidylinositol transfer protein 39521 Stomatin family protein

185961 Phosphoenolpyruvate carboxykinase 28225 Succinate/fumarate mitochondrial transporter

Continued on next page
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APC amino-acid permease family and the major facilitator
superfamily of transporters are two of the largest transporter
families described thus far [16,35]. The high recovery rates
of these two types of transporters, as well as the overall large
number of genes belonging to this class in the 7-0 sample,
underline the importance of these processes in the posthar-
vest life of P. ostreatus.

For 37 EST retrieving genes, no preliminary annotation
could be provided.

KOG annotation. The EuKaryotic Orthologous Groups
(KOG) of proteins is a eukaryote-specific version of the
NCBI’s Clusters of Orthologous Groups (COG) tool for iden-
tifying ortholog and paralog proteins [http://www.ncbi.nlm.
nih.gov/COG/]. Provided by the JGI for JGI-sequenced
organisms, the KOG tool offers a complementary approach
to assessing the integrated function of the genes retrieved in
the 7-0 database. Table 2 summarizes the KOG annotation of
the genes identified, grouping KOG hits within each catego-

Table 1. Continued

Gene ID Preliminary functional annotation Gene ID Preliminary functional annotation

Cell structure and growth (15 ESTs) Cellular signalling (11 ESTs)

160531 Actinin-like protein 29587 CAMK/CAMK-Unique protein kinase

175868 BEM46 family protein 165985 COP9 signalosome subunit 6

20480 Cell division cycle protein 46599 MAP kinase phosphatase

161688 Chitin deacetylase partial sequence 169392 Protein kinase C

21633 Chitin synthase 8 (glycosyltransferase family 2 protein) 46433 Ras-like protein

35056 Endochitinase (Glycoside hydrolase family 18 protein) 61429 Ser/Thr protein kinase

153813 Fungal Lectin 172262 TNFR/NGFR cysteine-rich region family protein

27082 Peroxisomal biogenesis factor 2 25694 Transcription factor PacC

49499 Peroxisomal membrane protein PEX16 159408 Protein typrosin kinase

42414 Tubulin gamma chain

173323 Unc104-type kinesin
Hypothetical proteins (37 ESTs)ª

185814 Vesicular-fusion protein SEC17 11121 43691 158093

12374 44536 160378

Nucleic acid metabolism (11 ESTs)
13580 48688 160783

158410 Chromodomain-helicase DNA-binding protein 15621 48688 162145

51943 DNA repair protein rhp42 20345 50936 162867

174532 Histone acetyltransferase mst2 21997 51247 167493

51378 pre-rRNA-processing protein IPI3 23844 52495 172796

52551 DNA clamp loader 23906 61655 173706

44554 Argonaute-like protein 27289 62016 174283

44257 Pentatricopeptide repeat protein 28111 155224 175114

24106 DEAD/DEAH box helicase 30743 157567 176014

52061 pre-mRNA-processing-splicing factor

186100 RNA helicase

51393 tRNA-intron endonuclease

ªThe hypothetical protein models correspond to hits with Coprinopsis cinerea (five models/ESTs), Laccaria bicolor (five models/ESTs), Moniliophthora
perniciosa (three models/four ESTs), Schizophyllum commune (six models/ESTs) and Serpula lacrymans (14 models/17 ESTs).
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ry for purposes of simplification. Each retrieved KOG term
was weighted by the number of times that each EST or gene
was recovered in the general analysis. Of the 155 queried
KOG terms identified, those with the highest values in each
functional category were: post-translational modification,
protein turnover, and chaperones, in the class of cellular
processes and signaling; and translation, ribosomal structure,
and biogenesis. in the class of information storage and pro-
cessing. In the category of metabolism, the processes
involved in protein and carbohydrate transport and in metab-
olism were predominant. These results confirmed an active
metabolism in the 7-day harvested fruit bodies that was cen-
tered on carbohydrate and protein turnover. 

Transcriptomics analysis of the retrieved genes.
To complement the annotation data discussed above, we
scored the transcription values of the 7-0 enriched genes in the
general transcriptomics database for P. ostreatus. Only the data
from static cultures were used, since compared to shaken cul-
tures this condition more closely resembles that expected for
mature fruit bodies. For each of the retrieved genes, the corre-
sponding expression value in monokaryons and dikaryons was
calculated. The obtained expression levels (RPKM) ranged
from 0.0 to 1433.65 in monokaryons, and from 0.0 to 1416.73
in dikaryons, indicating that the 7-0 enriched genes are those
with low expression levels in liquid cultures of P. ostreatus
(data not shown). The transcription levels of each one of the 7-
0 enriched genes in monokaryons and dikaryons were com-
pared by using the base-2 logarithm of the ratio between the
expression of each gene in monokaryons vs. dikaryons, with a
threshold of 1.5 used to determine whether a gene was overex-
pressed. As shown in Table 3, 21 gene models appeared to be
overexpressed in dikaryons. This result was expected, since
the EST came from a dikaryon fruit body. The degree of
dikaryotic overexpression was, in some cases, very high:
29.08-fold for gene model 162333 (coding for a peptidase S33,
mapping to chromosome 9) and > 9-fold for model 160783
(codin for a major intrinsic protein, aquaglyceroporin). Model
175868, encoding the above-mentioned BEM46 protein, was
also overexpressed in dikaryons; this gene likewise showed a
high recovery frequency as an EST.

Conversely, three 7-0 enriched gene models were overex-
pressed in monokaryons. Two of them showed minimal
expression levels (models 153859 and 173106) whereas the
other was model 167484, encoding an epoxide hydrolase and
recovered twice as an EST in the 7-0 sample.

Taken together, the genomics and transcriptomics data
presented herein provide a detailed picture of the fruit bodies
stored for 7 days at 4ºC, revealing an active metabolism that

mobilized proteins and carbohydrates. RNA metabolism was
also highly active during storage. The importance of nitrogen
metabolism under these conditions was evidenced by the
level of recovery of arginine and ornithine transaminases. As
stored fruit bodies must maintain their biological activity
using their own resources, the expression of autophagy-relat-
ed genes to mobilize nutrients and responsible for the overall
decay of the fruit bodies is not surprising. Genes enriched

TRANSCRIPTOME OF P. OSTREATUS

Table 2. KOG-term frequency

KOG term Frequency

Cellular Processes and Signaling 48

Posttranslational modification, protein turnover, chaperones 15

Cytoskeleton 8

Intracellular trafficking, secretion, and vesicular transport 6

Signal transduction mechanisms 6

Cell wall/membrane/envelope biogenesis 4

Defense mechanisms 4

Extracellular structures 4

Nuclear structure 1

Information Storage and Processing 29

Translation, ribosomal structure, and biogenesis 11

Transcription 7

RNA processing and modification 6

Chromatin structure and dynamics 3

Replication, recombination and repair 2

Metabolism 52

Amino acid transport and metabolism 12

Carbohydrate transport and metabolism 12

Energy production and conversion 8

Lipid transport and metabolism 8

Inorganic ion transport and metabolism 7

Cell cycle control, cell division, chromosome partitioning 2

Secondary metabolites biosynthesis, transport, and catabolism 2

Nucleotide transport, and metabolism 1

Poorly Characterized 26

General function prediction only 20

Function unknown 6

Total 155
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under cold-storage conditions were those with medium- to
low-level expression in static liquid cultures. Note that the
method used to construct the enriched library should have
removed most housekeeping genes. Notwithstanding, some of
the enriched genes appeared to be highly overexpressed in
dikaryons vs. monokaryons. The enriched genes mapped
throughout the P. ostreatus genome, although some gene clus-
ters had specific chromosomal locations. In any case, many
gene models must code for still unknown functions. Clearly,
much work remains before the living conditions of an organ-
ism can be explained by its genomic and transcriptomic data. 
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