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Summary. Leishmania infantum is the etiological agent of visceral leishmaniasis in Mediterranean areas. The life cycle of

the protist is dimorphic and heteroxene, as promastigotes develop inside the gut of sand-fly vectors and amastigotes multiply

inside mammalian phagocytic cells. In previous studies, we analyzed the expression profiles of these stages and the modula-

tion of gene expression triggered by temperature increase and acidification, both of which are crucial in the differentiation of

promastigotes to amastigotes. Differential expression profiles of translation initiation and elongation factors were detected.

Here we report that the presence of 1 mM cadmium acetate in the culture medium leads to a shock response consisting of

growth arrest, morphological changes, the absence of motility, and the up-regulation of genes that code for: a heavy metal

transporter, trypanothione reductase, a haloacid-dehalogenase-like hydrolase, and a metalloexopeptidase from the M20 fam-

ily, among others. This response is probably controlled by the differential expression of regulatory genes such as those encod-

ing initiation factors 4E, eukaryotic translation initiation factor 3 subunits 8 and 2α, and elongation factor 1β. The initiation

factor 2α gene is induced in anomalous environments, i.e., those outside of the protist’s normal life-cycle progression, for

example, in response to the presence of cadmium ions, acidification without temperature increase, and vice versa. Our results

suggest that the regulation of gene expression is a key component of the shock response. [Int Microbiol 2011; 14(1):1-11]
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Introduction

Trypanosomatid protists from the genus Leishmania are the

etiological agents of a compendium of neglected diseases

termed leishmaniasis, which affect a variety of mammalian

hosts including humans. The estimated prevalence is 12 mil-

lion people worldwide and the incidence is 2 million,

although declaration is compulsory only in 32 out of the 88

affected countries, which leads to an underestimation of the

real magnitude of the problem. About half a million people

are affected by visceral leishmaniasis, which kills over

60,000 people per year [World Health Organization.

Leishmaniasis. Burden of disease, http://www.who.int/leish-

maniasis/burden/en/]. Leishmania infantum is the etiological

agent of visceral leishmaniasis in the Mediterranean basin,

where coinfection with HIV is increasing [9,18] and domes-

tic dogs are the main reservoir of the protist [6]. The life

cycle of Leishmania is dimorphic and heteroxene. The motile

promastigote stage is fusiform and flagellated and develops

inside the gut of female phlebotominae sand-fly vectors. The

non-motile round amastigote form is able to multiply inside
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phagocytic cells of the mammalian host, thus evading the

immune response (reviewed in [12]). As a consequence, three

differentiation processes take place in the Leishmania life

cycle: metacyclogenesis inside the vector gut, which leads to

highly infective promastigotes that are transmitted to the

mammalian host [10]; promastigote-to-amastigote differenti-

ation inside phagocytes; and amastigote-to-promastigote

transition when a sand-fly feeds from an infected mammal.

The gene expression profile of the promastigote-to-amastig-

ote transition has been intensively studied in some species by

means of: partial random genomic microarrays [1,21],

oligonucleotide microarrays [13,15,19], partial cDNA

microarrays [5], serial analysis of gene expression (SAGE)

[11,16], and proteomic analysis [20]. However, we have

reported a large number of unknown and non-annotated

genes in the genome of L. infantum. They have been deter-

mined by hybridization analysis of complete shotgun genome

microarrays in a series of gene expression profile analyses.

Namely, we have studied the main differentiation processes

of the L. infantum life cycle [2,3] and the specific effect on

differentiation at the post-transcriptional level of temperature

increase and acidification [4]. These are the most significant

contributing factors in amastigote differentiation, and their

contributions were analyzed simultaneously and individually.

As a result, we observed, unexpectedly, that temperature

increase has a greater influence than pH decrease in the dif-

ferentiation of L. infantum promastigotes to amastigotes. The

expression profile induced by pH decrease alone is very dif-

ferent from the one induced by the combination of both fac-

tors. By contrast, the temperature-increase-induced expression

profile resembles the profile induced by the combination of

temperature increase and acidification (an amastigote-like pro-

file). However, there are substantial differences, such as the

expression pattern of eukaryotic elongation initiation factor 2α
(eEF2α). eEF2α is independently up-regulated by acidifica-

tion and temperature increase, but not by a combination of

both. The environments defined by increased temperatures or

decreases in pH are situations that challenge the normal life-

cycle progression of Leishmania spp.

In this work, we describe the transcript-level response of

Leishmania infantum promastigotes to another set of condi-

tions outside its standard life cycle: the presence of the heavy

metal cadmium. In spite of cadmium toxicity, the resistance

of the protist in the promastigote stage was strong and last-

ing. Gene expression profiles were compared on the basis of

morphological changes in the population that were triggered

by cadmium acetate. The functions of some of the genes dif-

ferentially regulated by cadmium acetate were found to be

related to gene expression regulatory mechanisms. These

mechanisms may be the key component of cadmium resist-

ance in particular and of stress conditions in general.

Materials and methods

Protist culture. Leishmania infantum promastigotes (isolate

M/CAN/ES/98/10445, zymodeme MON-1) were cultured in RPMI 1640

supplemented with L-glutamine (Cambrex, Karlskoga, Sweden), 10% heat

inactivated fetal bovine serum (HIFBS) (Cambrex) and 100 μg strepto-

mycin/ml –100 IU penicillin/ml (Cambrex) (complete medium) at 27°C at a

starting density of 2 × 106 promastigotes/ml from an early passage (5th to

10th) of the culture after extraction from the gut of the sand fly. Three repli-

cate cultures in the absence and presence of cadmium acetate 0.1 mM were

started. Cell density was assessed daily and promastigotes were harvested at

2000 g for 10 min at day 4. Aliquots of 105 and 2 × 107 promastigotes were

used for Giemsa staining and RNA preparation, respectively.

Gene expression profiling by microarray hybridization
analysis and qRT-PCR validation. These procedures were

described in detail in a previous report [2]. Briefly, total RNA was isolated

and its quality and absence of DNA contamination were assessed by capil-

lary electrophoresis. Single-stranded cDNA was synthesized and indirectly

labeled with cyanines (Cy5 for cadmium acetate-treated promastigotes and

Cy3 for control promastigotes) by the aminoallyl-dUTP procedure. Custom

L. infantum DNA microarrays were then hybridized with both cDNA sam-

ples using equimolar amounts of incorporated cyanin. After scanning and

local background subtraction, the medians of the raw intensity values and the

Cy5/Cy3 ratios (GenePix scanner and 4.0 software, Axon Instruments) were

normalized by applying the locally weighted scatter plot smoothing

(LOWESS) algorithm. A paired t-test was performed for three biological

replicates to find genes with significant differences in expression levels

between cadmium-acetate-treated and untreated cells (AlmaZen). We con-

sidered that a given clone contained a gene with significant differential reg-

ulation when it fulfilled the following criteria: (i) fold change (F) ≥ 1.7

(Cy5/Cy3 ratio if Cy5 > Cy3) or ≤ –1.7 (–Cy3/Cy5 ratio if Cy3 > Cy5), (ii)

total relative fluorescence intensity value > 5000 FU (fluorescence units),

and (iii) p < 0.05. The selected clones were sequenced, assembled, and

mapped against the L. infantum genome sequence. Some of the clones were

validated by relative quantitative real time PCR (qRT-PCR), applying the

SYBR-Green method as described [2,4]. Brifely, non-labeled cDNA samples

were synthesized with Superscript III Reverse Transcriptase (Invitrogen).

The reactions were carried out in iQ™ SYBR Green Supermix (BioRad) in

an MyiQ™ Single-Color real-time PCR detection system (BioRad). The

oligonucleotide pairs (0.3 μM each) used for qRT-PCR analyses (5′–3′)
were: TR_Fw, ACGGCGAGGTTCTGGGTGTT; TR_Rv, TCCGATG-

GTGCTGTGGAAGT; DEAD/H_5.360_Fw; DEAD/H_5.360_Rv;

mpM20_Fw, CGGATTGACAGCAGCCGTAGT; mpM20_Rw, TCGCAC-

CACAAACTCTTGGAT; 6P1FK_Fw, GCACCAACCTGGCAACTCTT;

6P1FK_Rv, CCTTGATGGGCACGAGGATA; eEF1β_Fw, ACGAGACAC-

CGGGCATGAAT; eEF1β_Rw, CGGACTGCGTGTGCTTCTCT;

3′ NT/Nase_Fw, GGCTGAGGTGCACAACCACT; 3′ NT/Nase_Rv,

GGGCGACGTGCTCATAGGAA; 3′ NT/NaseP_Fw, CAACACCAC-

CATTGGGCACA; 3′ NT/NaseP_Rv, TAAATCCAGTGCGATCGGCT;

mmc_Fw, GGATAGACCGCCACGGATA; mmc_Rv, CGGAGAGATC-

GACGGATGAA; drpplp_Fw, AGTCAGCAAACCAGCTCTGCA; drp-

plp_Rv, CGCGTACCGTAGCCCTCCAT. Quantification was performed by

the efficiency-corrected ΔCt method. The gene of reference was 18 S rRNA.

ALCOLEA ET AL.



3INT. MICROBIOL. Vol.14, 2011

Results and Discussion 

Expression profile of L. infantum promasti-
gotes in the presence of cadmium acetate.
Promastigotes can survive for at least four months when cad-

mium acetate is added to the culture medium. Nevertheless,

round morphologies instead of the typical promastigote shape

are observed (Alfredo Toraño, personal communication). The

exposure to cadmium acetate 1 mM for 4 days resulted in

growth arrest (Fig. 1A) and changes in morphology (Fig. 1B).

Growth arrest occurred beginning on day 2 but significant

morphological changes appeared somewhat later, from 72 to

84 h of exposure. For the gene expression profile analysis,

RNA was extracted from untreated and treated replicate pro-

mastigote cultures in parallel with the initial morphological

changes. The transformation of promastigotes under cadmium

pressure appeared to be sequential. Cadmium-treated and

untreated (control) promastigotes were analyzed for gene

expression at day 4 by means of shotgun genomic microarrays

carried out as previously reported [2].

The quality of the isolated total RNA and amplified

mRNA is shown in Fig. 2. Ninety-eight genes were found to

be differentially regulated, with 57 up-regulated and 41 down-

regulated (Fig. 3, Table 1, 2 and 3). Note that only 12 up-reg-

ulated and 12 down-regulated genes had previously been

characterized to some extent, by gene function annotation in
silico and/or experimental characterization. The expression

pattern of these genes is illustrated in Fig. 4. In addition, a

gene encoding an unknown protein, two genes encoding

hypothetical proteins of unknown function, and five genes

encoding conserved hypothetical proteins were up-regulated

by cadmium, while four genes encoding conserved hypothet-

ical proteins were down-regulated by the metal. Twelve and

14 unresolved clones containing more than one gene annota-

tion were, respectively, up-and down-regulated, while 26 and

11 clones, respectively, did not contain an annotated gene

fragment (Tables 2 and 3). Similar observations were report-

ed for the expression profile analyses performed throughout

the life cycle, in metacyclic vs. procyclic promastigotes, and

in response to temperature and/or pH shifts [2]. The differen-

tiated stages showed a higher rate of up-regulation of unchar-

acterized and non-annotated genes. Moreover, the number of

clones that mapped against the genome sequence but not with

any annotated gene was higher at these stages (Table 1). The

characterization of these genes will improve our understand-

ing of the physiology of the protist, particularly during differ-

entiation and under environmental pressure.

Genes involved in transport, signal transduction,

nucleotide metabolism, and the regulation of gene expression

are known to be differentially regulated by exposure to cad-

mium acetate. Among the signal transduction genes, those

encoding an ADP ribosylation factor, a protein kinase (PK),

two mitogen activated protein kinases (MAPK), and 3′

nucleotidase/nuclease (3′ NT/Nase) are down-regulated.

Down-regulation of MAPK genes is consistent with the

growth arrest of the promastigotes (Fig. 1). As noted in pre-

vious reports [2–4], signal transduction and cell cycle regula-

tion pathways in the genus Leishmania have not been eluci-

dated to date, despite annotation of the sequenced genome

and research into the kinomes of trypanosomatids [17]. The

gene expression profiles of this study are an initial step in the

CADMIUM RESISTANCE IN L. INFANTUM 
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Fig. 1. Growth and morphology of promastig-

otes in the absence and presence of 1 mM cad-

mium acetate. (A) Average growth curves of

three replicates of the cultures performed for

each of the conditions assayed. (B) Morpho-

logy of untreated promastigotes and (C) cad-

mium acetate-treated promastigotes (two

fields shown).
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elucidation of signal transduction pathways, improving our

understanding of the protist’s ability to sense and respond to

environmental challenges. 3′ NT/Nase is also involved in

nucleotide metabolism, as is nucleotide diphosphate kinase b

(Ndkb). Both genes were up-regulated in stationary phase

promastigotes with respect to their expression in amastigotes

[3]. In the case of 3′ NT/Nase, its gene was up-regulated in

response to temperature increases and pH decreases [4].

Ndkb expression was down-regulated in metacyclic com-

pared to procyclic promastigotes [2]. The down-regulation of

genes involved in nucleotide uptake, signaling, and cell cycle

control together with the observed growth arrest suggests a

non-dividing response triggered by the presence of cadmium

acetate.

ALCOLEA ET AL.

Table 1. Annotation status of differentially regulated genes in promastigotes in the presence of 1 mM cadmium acetate

Number of genes GenBank (GSS)

Annotation status Up-regulated Down-regulated Up-regulated Down-regulated

Function inferred from homology/and or experimentally characterized 12 12

The clones are described in

Tables 2 and 3
Hypothetical protein, conserved 5 4

Hypothetical protein, unknown function 1 0

Unknown 1 0

Unresolved clones 12 14 GS883004–15 GS883040–52

Clone without gene annotation 26 11 GS883016–39 GS883053–65
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Fig. 2. Analysis of RNA samples. Electropherograms of total RNA samples of cadmium acetate-untreated (A) and treated (B) pro-

mastigotes. The first spike corresponds to RNA6000 Nano Marker (Agilent Technologies). RNA integrity is observed in rRNA 18S

and 24S α and β spikes, with a 24S/18S ratio of 2.2; no smear was observed in the RNA samples extracted and processed for the

gene expression profile on day 4. (C) 1% agarose gel electrophoresis of amplified mRNAs.
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The down-regulation of branched-chain amino acid

aminotransferase following cadmium acetate exposure sug-

gests a decrease in branched-chain amino acid catabolism

under these conditions. Two transporter genes were up-regu-

lated in response to cadmium acetate pressure: a zinc trans-

porter containing a ZIP domain (ZnT) and an ABC trans-

porter from the E subfamily (ABCE). Two other transporter

genes were down-regulated: a pteridine transporter and an

amino acid transporter aATP11 (two copies tandemly locat-

ed). Trypanosomatids are auxotrophs for pteridines. Shifts in

temperature or pH affect pteridine uptake, consistent with our

recent finding that the pteridine transporter gene

LinJ06_V3.1320 (PT) is down-regulated by an increase in

temperature, either independently or in combination with

medium acidification [4]. These findings suggest that, under

certain environmental conditions, the protists inactivate dis-

tinct amino acid and nucleotide biosynthetic pathways. In

fact, a vacuolar metalloexopeptidase from ClanMH and the

M20 (mpM20) family was up-regulated under exposure to

cadmium acetate, suggesting the utilization of exogenous

amino acid sources and/or amino acids recycled from the

degradation of proteins abundantly expressed in the pro-

mastigote stage under normal life-cycle progression. Thus, in

L. infantum promastigotes, amino acid and nucleotide meta-

bolic changes are reflected by alterations in proliferation, cell

motility, and shape.

The calmodulin gene (CaM) was down-regulated under

the selective pressure of cadmium acetate; its orthologue in

L. major was shown to be constitutively expressed in the

main stages of the protist’s life cycle [15]. The essential func-

tions of CaM include Ca2+ homeostasis, which is triggered by

its accumulation in the plasma membrane in trypanoso-

matids, in contrast to other eukaryotes. The accumulation

reflects the activation of Ca2+-ATPase by CaM [7].

Consistent with this sequence of events was the identification

in the hypothetical protein gene LinJ32_V3.2410 of a calcy-

clin binding protein domain (CD06468 code from the

Conserved Domain database).

Among the cadmium-acetate-sensitive genes involved in

the cytoskeleton and flagellum, the gene encoding parafla-

gellar rod protein 4 (PFR4) was found to be down-regulated.

While the flagellum emerged in promastigotes treated with

cadmium, movement in fresh preparations of this life stage

was not observed, perhaps due to PFR4 down-regulation.

Furthermore, the formin gene was also down-regulated,

which suggests that actin polymerization priming is dimin-

ished in cadmium-acetate-treated promastigotes.

The surface antigen-like protein gene (SALp) was up-

regulated in the presence of cadmium acetate. SALp was also

shown to be differentially regulated in the life cycle of

L. infantum, namely, down-regulated in stationary vs. expo-

nential-growth phase promastigotes and up-regulated in both

CADMIUM RESISTANCE IN L. INFANTUM 

Fig. 3. M/A scatter plot of the microarray hybridization analysis. M = (log2Ri/log2Gi) and A = [(log2Ri + log2Vi)/2], where R and G are, respectively, fluores-

cence intensity values of red (Cy5-cDNA for CdAc-treated promastigotes) and green (Cy3-cDNA for control promastigotes) dyes.
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of these phases in promastigotes vs. amastigotes. In other

words, SALp was down-regulated in amastigotes, while its

expression reached the highest levels in exponentially grow-

ing promastigotes. Consequently, SALp appeared to be a pro-

mastigote-specific gene, whereas, as previously shown [2],

SALp2 is an amastigote-specific gene.

Finally, for several hypothetical proteins, the respective

genes that were up-regulated by cadmium contained con-

served domains of known functions. For example, a

cytochrome b5 domain (PF00173 from the PFAM database)

was identified in the gene LinJ31_V3.1210; the gene

LinJ28_V3.0530 contained a tetratricopeptide repeat domain

(CD00189) involved in protein-protein interactions (proba-

bly an hsp90-like chaperone function); and the gene

LinJ06_V3.1290 was similar to the monooxygenase gene of

Trypanosoma cruzi (BLASTP search: 93% homology, e

value 4e-142). To summarize our findings: promastigotes are

resistant to cadmium but their lack of movement (down-reg-

ulation of PFR4) and metabolic adaptations affect their fur-

ther development. These results have interesting implications

for the development of transmission control agents.

Gene expression regulation: the key to the
shock responses and differentiation? Exposure

to cadmium acetate led to growth arrest (Fig. 1A), dramatic

morphological changes including a decrease in cell volume

(Fig. 1B), and the up-regulation of genes encoding: ZnT, try-

panothione reductase (TR), glycosomal phosphoenolpyru-

vate carboxykinase (gPEPCK), 6-phospho-1-fructokinase

(FK); a metalloexopeptidase (mpM20) from the ClanMH

family, and a haloacid dehalogenase-like hydrolase (HAD-

like) (Table 2). 

According to GO annotations, ZnT is able to transport

heavy metal ions, and mpM20 is vacuolar. HAD-like belongs

to the family of dehalogenases, whose members include

those involved in detoxification [14]. Taken as a whole, these

findings support a sequence of events in which the shock

response activated by the protist consists basically of detoxi-
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Fig. 4. Differential gene expression profile trig-

gered by cadmium acetate 1 mM.
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fication and the storage of nutrients. These responses may be

controlled by the inhibition of DNA replication as well as by

the post-transcriptional and translational regulation of gene

expression. In fact, some genes involved in the regulation of

gene expression were shown to be differentially displayed in

response to cadmium acetate. Transcriptionally down-regu-

lated genes included those encoding: a minichromosome

maintenance complex protein (mmc) involved in DNA repli-

cation, a histone H2B variant (H2Bv), a putative splicing fac-

tor, eukaryotic translation initiation factor 4E (eIF4E), and a

CADMIUM RESISTANCE IN L. INFANTUM 

Table 2. Genes up-regulated by 1 mM cadmium acetate. The features described are: clone number; F; base-two logarithmic scale F, and SD values; P.

GenBank GSS accession numbers; annotation; annotated gene function; qRT-PCR. When a given clone overlapped with more than one annotation, stage-

specific regulation was only demonstrated if the qRT-PCR result was positive (+)

Clones F Log2F ±  SD P GenBank GSS Annotation Annotated gene function qRT-PCR

+/– F ± SD

Lin13D11 1.79 0.8 ± 0.3 0.042 GS882959 LinJ21_V3.0770 ATP-binding cassette, subfamily E ND

Lin89D9 1.76 0.8 ± 0.2 0.029 GS882960

Lin166F2 2.19 1.1 ± 0.2 0.012 GS882961

Lin76E5 1.80 0.8 ± 0.3 0.032 GS882962 LinJ36_V3.7320 Eukaryotic translation initiation factor 3 subunit 8 ND

Lin93A7 2.09 1.1 ± 0.2 0.038 GS882963 LinJ21_V3.0790 Hypothetical protein, conserved ND

Lin95A3 2.16 1.1 ± 0.1 0.004 GS882964

Lin101D5 2.46 1.3 ± 0.4 0.035 GS882965 LinJ27_V3.2500 Glycosomal phosphoenolpyruvate carboxykinase ND

Lin116A5* 1.83 0.9 ± 0.1 0.008 GS882966 LinJ05_V3.0350 Trypanothione reductase +    6.8 ± 0.2

LinJ05_V3.0360 ATP-dependent RNA helicase, putative –    –1.2 ± 0.0

Lin125A5 1.73 0.8 ± 0.1 0.006 GS882967 LinJ32_V3.2410 Hypothetical protein, conserved ND

Lin139F3* 1.73 0.8 ± 0.2 0.030 GS882968 LinJ29_V3.2470 (Asp) Metallopeptidase, Clan MH, family M20 +    8.7 ± 0.1

Lin144H7 2.03 1.0 ± 0.3 0.028 GS882969 LinJ31_V3.1210 Hypothetical protein, unknown function ND

Lin177E11* 1.70 0.8 ± 0.3 0.038 GS882970 LinJ29_V3.2620 6-Phospho-1-fructokinase, putative +    2.5 ± 0.3

Lin295F11 1.82 0.9 ± 0.3 0.041 GS882971

Lin124C7 1.97 1.0 ± 0.2 0.013 GS882972 LinJ33_V3.3340 Small nuclear ribonucleoprotein SmD2 ND

Lin150H10 2.12 1.1 ± 0.3 0.018 GS882973 LinJ05_V3.1210 Surface antigen-like protein ND

Lin198E1 1.77 0.8 ± 0.1 0.008 GS882974 LinJ27_V3.2460 Unknown ND.

Lin221B6 1.77 0.8 ± 0.2 0.015 GS882975 LinJ28_V3.1470/80 Haloacid dehalogenase-like hydrolase, putative ND

Lin228F5 4.25 2.1 ± 0.3 0.033 GS882976 LinJ06_V3.1290 Hypothetical protein, conserved ND

Lin234F2 1.76 0.8 ± 0.2 0.021 GS882977 LinJ28_V3.0530 Hypothetical protein, conserved ND

Lin248G3 2.03 1.0 ± 0.2 0.011 GS882978 LinJ23_V3.0130 Hypothetical protein, conserved ND

Lin282B6 2.85 1.5 ± 0.5 0.039 GS882979 LinJ03_V3.0960 Elongation initiation factor 2a subunit, putative ND  

Lin283D9 1.74 0.8 ± 0.2 0.019 GS882980 LinJ28_V3.2050 Zinc transporter (ZIP domain), putative ND  

Lin284F5 2.58 1.4 ± 0.3 0.011 GS882981 LinJ36_V3.1490 Translation elongation factor 1β, putative +    30.6 ± 2.1

Lin309A6 1.92 0.9 ± 0.2 0.10 GS882982 LinJ26_V3.2710 Hypothetical protein, unknown function ND

*Clone mapping with more genes than shown in the table that have been resolved by qRT-PCR. 
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zinc finger protein gene, while the genes encoding small

nuclear ribonucleoprotein SmD2 (SmD2), eukaryotic transla-

tion initiation factors eEF2α and eIF3s8, and elongation fac-

tor eEF1β were up-regulated at the transcript level. H2Bv

was found to be significantly up-regulated in mature amastig-

otes compared to stationary phase promastigotes [20], and

mmc by the specific influence of an increase in temperature

and a decrease in pH [4]. eIF4E, part of the eIF4F initiation

ALCOLEA ET AL.

Table 3. Genes down-regulated by 1 mM cadmium acetate. The features described are: clone number; F; base-two logarithmic scale F, and SD values; P.

GenBank GSS accession numbers; annotation; annotated gene function; qRT-PCR. When a given clone overlapped with more than one annotation, stage-

specific regulation was only demonstrated if the qRT-PCR result was positive (+). (*) Type c clones [2]

Clones F Log2F ±  SD P GenBank GSS Annotation Annotated gene function qRT-PCR

+/– F ± SD

Lin35A12 –1.74 –0.8 ± 0.2 0.028 GS883041 LinJ30_V3.2370 Zinc finger protein +     –6.8 ± 0.3

LinJ30_V3.2380 ADP ribosylation factor +   –19.0 ± 0.7

LinJ30_V3.2390 Hypothetical protein, conserved ND

Lin46H3* –1.79 –0.8 ± 0.2 0.011 GS883042 LinJ27_V3.1950 Branched chain amino acid aminotransferase +   –11.6 ± 1.0

LinJ35_V3.3620 Hypothetical protein, conserved ND

Lin54F2 –2.05 –1.0 ± 0.3 0.022 GS882983 LinJ03_V3.0600/10 Amino acid transporter aATP11, putative ND

Lin61A5 –1.73 –0.8 ± 0.3 0.039 GS883043 LinJ27_V3.2210 Hypothetical protein, conserved +     –5.1 ± 0.2

LinJ27_V3.2220 Translation elongation regulation factor, putative ND

Lin60B1* –2.80 –1.5 ± 0.2 0.004 GS882984 LinJ31_V3.2370/80 3′-Nucleotidase/nuclease/precursor +   –16.9 ± 1.0

Lin84E8 –2.89 –1.5 ± 0.0 0.000 GS882985

Lin93D4 –1.72 –0.8 ± 0.2 0.024 GS882986

Lin157D8 –3.08 –1.6 ± 0.2 0.007 GS882987 

Lin242E2 –2.87 –1.5 ± 0.3 0.016 GS882988

Lin77B12 –1.71 –0.8 ± 0.1 0.004 GS882989 LinJ27_V3.1520 Eukaryotic translation initiation factor eIF-4E, putative ND

Lin125B3 –1.71 –0.8 ± 0.1 0.005 GS882990

Lin84D7 –1.81 –0.9 ± 0.3 0.032 GS882991 LinJ32_V3.3100 Nucleoside diphosphate kinase b ND

Lin104C3 –1.87 –0.9 ± 0.1 0.006 GS882992 LinJ32_V3.3100/10

LinJ32_V3.3120 Minichromosome maintenance protein complex      

protein (mmc)

+   –54.8 ± 1.6

Lin158H4 –2.11 –1.1 ± 0.3 0.029 GS882993 LinJ32_V3.3110 Nucleoside diphosphate kinase b ND

Lin83G10 –1.78 –0.8 ± 0.1 0.036 GS882994 LinJ33_V3.0100 Hypothetical protein, conserved ND

Lin135A4 –1.73 –0.8 ± 0.2 0.016 GS882995 LinJ13_V3.0280 Mitogen activated protein kinase ND

Lin150E4 –1.76 –0.8 ± 0.1 0.006 GS882996 LinJ13_V3.1060 Calmodulin, putative ND

Lin173A1* –3.01 –1.6 ± 0.1 0.000 GS883049 LinJ24_V3.1120 Splicing factor, putative +     –6.8 ± 0.5

LinJ24_V3.1130 Formin, putative +      –8.5 ± 0.4

Lin173F3 –1.74 –0.8 ± 0.2 0.012 GS882997 LinJ25_V3.1520 Hypothetical protein, conserved ND

Lin187C10 –2.77 –1.5 ± 0.3 0.013 GS882998 LinJ06_V3.1320 Pteridine transporter, putative ND

Continued on next page
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complex, binds the 5′ cap of mature mRNAs [8]. The down-

regulation of this gene was indicative of a general decrease in

translation. The orthologue of SmD2 in L. major is involved

in trans-splicing (GO0045291, term from the Gene Ontology

database) and is constitutively expressed in amastigotes and

exponential phase promastigotes [15]. eIF3s8 and eEF2α
were recently found to be down-regulated in amastigotes vs.
exponential phase promastigotes [2]. In addition, eEF2α is

CADMIUM RESISTANCE IN L. INFANTUM 

Table 3. Continued.

Clones F Log2F ±  SD P GenBank GSS Annotation Annotated Gene Function qRT-PCR

+/– F ± SD

Lin201C10 –1.77 –0.8 ± 0.2 0.015 GS882999 LinJ34_V3.2770 Hypothetical protein, conserved ND

Lin209B12* –1.71 –0.8 ± 0.3 0.031 GS883051 LinJ05_V3.0040 Paraflagellar rod protein 4 +          –3.6 ± 0.4

LinJ05_V3.0050 Hypothetical protein, conserved ND

Lin227B5 –1.76 –0.8 ± 0.1 0.015 GS883000 LinJ20_V3.0290 (**) Hypothetical protein, conserved (**) ND

LinJ20_V3.0300 (**) Hypothetical protein, conserved (**) ND

LinJ20_V3.0310 (**) Developmentally regulated 

phosphoprotein-like protein (**)

–            1.4 ± 0.5

Lin231A1 –1.72 –0.8 ± 0.2 0.019 GS883001 LinJ29_V3.2680 Protein kinase, putative ND

Lin255E12 –1.76 –0.8 ± 0.2 0.019 GS883002 LinJ28_V3.0210 Histone H2B variant ND

Lin265E2 –2.04 –1.0 ± 0.3 0.031 GS883052 LinJ36_V3.6760 Mitogen activated protein kinase

homologue

+          –5.7 ± 0.4

Lin273A8 –1.86 –0.9 ± 0.2 0.012 GS883003 LinJ12_V3.0650 Hypothetical protein, conserved ND

**Negative qRT-PCR result. Further quantification by qRT-PCR is required to determine the up-regulated gene  mapping with more genes than shown in

the table that have been resolved by qRT-PCR. 
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Fig. 5. Differential regulation of genes

involved in gene expression modulation.

The differential display of splicing and

translation factors is observed through-

out the life cycle of L. infantum and

under exposure to cadmium acetate.
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up-regulated in amastigotes by the specific influence of

either temperature increase or pH decrease whereas the con-

currence of both factors had no effect on amastigote-like

forms (gp46 negative) [2] or metacyclic promastigotes [2].

These data suggest the induction of eEF2α expression in cer-

tain anomalous environments, i.e., those outside of the nor-

mal progress of the protist’s life cycle, including the presence

of heavy metals, temperature increase, and pH decrease. 

Differential regulation of eEF1β has not been found in

any of the L. infantum main stages but its expression was

up-regulated by cadmium acetate. By contrast, eEF1α is

up-regulated in metacyclic promastigotes [2] and in

response to a temperature increase but down-regulated by

increased temperature when combined with acidification

[2]; however, it was not modulated by cadmium acetate. In

summary, each of the translation factors mentioned is

specifically modulated by the protist in response to certain

challenges, either affecting the life cycle or under abnor-

mal environmental situations (Fig. 5). Consequently, both

polycistronic mRNA processing and translational control

are probably key targets in the stimulation of the shock

response.

In our study, L. infantum promastigotes were highly

resistant to cadmium acetate, which at concentrations of 1

mM resulted in growth arrest, perhaps related to the down-

regulation of two MAPK genes. Despite the emerging fla-

gellum, growth was arrested and the promastigotes were

not motile, the latter probably due to the down-regulation

of the paraflagellar rod proteinPFR4. Initial morphological

changes in the promastigote population occurred 72–84

hours after the addition of cadmium acetate, which also

induced a shock response consisting of the up-regulation of

ZnT, TR, gPEPCK, FK, mpM20, and HAD-like genes. It

can be hypothesized that these expression profiles were

triggered by changes in the regulation of gene expression,

consistent with the down-regulation of H2v, SmD2, eIF4E,

and a putative splicing factor and the up-regulation of

eEF2α, eIF3s8, and eEF1β.

Our findings suggest that the modulation of gene expression

would be a key component of the shock response of L. infan-
tum promastigotes to cadmium acetate. Together with the

expression pattern of other translation factors throughout the

progression of the L. infantum life cycle and in response to

temperature and/or pH shifts, the data are consistent with dif-

ferential regulation of gene expression depending on the

environmental challenges. The results are applicable to

downstream strategies in the field of transmission control.
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