The taxophysiological paradox: changes in the intestinal microbiota of the xylophagous cockroach Cryptocercus punctulatus depending on the physiological state of the host Authors Mercedes Berlanga Department of Microbiology and Parasitology, University of Barcelona, Barcelona, Spain Bruce J. Paster Department of Molecular Genetics, Forsyth Institute, Boston, MA, USA Ricardo Guerrero Department of Microbiology, University of Barcelona, Barcelona, Spain Keywords: Cryptocercus punctulatus, Bacteroidetes, spirochetes, termite group TG1, whole intestinal microbiota, host physiological state, coevolution Abstract The phylogenetic relationships of symbiotic bacteria from the xylophagous cockroach Cryptocercus (Cryptocercidae, Blattaria) were compared to those described in previous reports in lower termites. The 16S rDNA bacterial genes were PCR-amplified from DNA isolated from the entire hindgut using Bacteria-selective primers, and the 16S rDNA amplicons were cloned into Escherichia coli. The changes in the gut microbiota of Cryptocercus under three physiological conditions, “active,” “fasting,” and “dead,” were studied. Analysis of the active-clone library revealed 45 new phylotypes (clones sharing > 97% sequence identity were grouped into the same phylotype) from 54 analyzed clones. The clones were affiliated with the phyla Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Spirochaetes, Synergistetes, Verrucomicrobia, and candidate phylum Termite Group 1 (TG1). Clones belonging to Spirochaetes, Bacteroidetes, and TG1 phyla clustered with previously reported sequences obtained from the guts of several termites, suggesting that these clones are common constituents of the intestinal microbiota of lower termites and Cryptocercus. In the fasting-clone library, 19 new phylotypes, from 49 clones studied, were distinguished. The new phylotypes were affiliated with the phyla Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, Spirochaetes, Synergistetes, and the candidate phylum TM7. Finally, in the dead-clone library, 24 new phylotypes from 50 studied clones were found. The new phylotypes were affiliated with the phyla Firmicutes, Actinobacteria, and Proteobacteria. Thus, from active, to fasting, to dead physiological states, a decrease in the number of phyla present in the whole microbial gut was evident. However, in the dead physiological state, each phylum conserved contained more new phylotypes. This poses a taxophysiological paradox, because a stable, active physiological state of Cryptocercus—due to a continuous input of wood—supports a higher diversity of bacterial phyla, probably necessary to maintain a sharp O2–H2 gradient in the gut. By contrast, in the dead state, nutrient input is limited to the residual gut microbiota that is killed by the newly oxic environment, thus providing a food source for other, aerobic or facultative anaerobic bacteria. This results in an increase in the internal diversity of the few remaining phyla. [Int Microbiol 2009; 12(4):227-236] Author Biographies Mercedes Berlanga, Department of Microbiology and Parasitology, University of Barcelona, Barcelona, Spain Department of Microbiology and Parasitology, University of Barcelona, Barcelona, Spain Bruce J. Paster, Department of Molecular Genetics, Forsyth Institute, Boston, MA, USA Department of Molecular Genetics, Forsyth Institute, Boston, MA, USA Ricardo Guerrero, Department of Microbiology, University of Barcelona, Barcelona, Spain Department of Microbiology, University of Barcelona, Barcelona, Spain Downloads PDF Published 2010-01-21 Issue Vol. 12 No. 4 (2009) Section Research Articles License Submission of a manuscript to International Microbiology implies: that the work described has not been published before, including publication in the World Wide Web (except in the form of an Abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that all the coauthors have agreed to its publication. The corresponding author signs for and accepts responsability for releasing this material and will act on behalf of any and all coauthors regarding the editorial review and publication process.If an article is accepted for publication in International Microbiology, the authors (or other copyright holder) must transfer to the journal the right–not exclusive–to reproduce and distribute the article including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature. Nevertheless, all article in International Microbiology will be available on the Internet to any reader at no cost. The journal allows users to freely download, copy, print, distribute, search, and link to the full text of any article, provided the authorship and source of the published article is cited. The copyright owner's consent does not include copying for new works, or resale. In these cases, the specific written permission of International Microbiology must first be obtained.Authors are requested to create a link to the published article on the journal's website. The link must be accompanied by the following text: "The original publication is available on LINK at <http://www.im.microbios.org>. Please use the appropiate URL for the article in LINK. Articles disseminated via LINK are indexed, abstracted, and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.