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Summary. The microbial compositions of two soils from the northern Ecuadorian Amazon (Francisco de Orellana

province), one contaminated with petroleum and the other uncontaminated, were compared. Classical culture and molecular

techniques were used to analyze microbial diversity. The cultivable Bacteria from contaminated soil belonged to betapro-

teobacteria (16.6%), gammaproteobacteria (66.6%), and Firmicutes (16,6%), whereas in uncontaminated soil, cultivable

Bacteria were identified as gammaproteobacteria (80%) and Firmicutes (20%). Analysis of the 16S rRNA showed that in the

contaminated soil proteobacterial populations (alpha-, beta- and deltaproteobacteria) were more abundant than acidobacterial

populations. The Shannon index (H′ ) was used to estimate diversity in the contaminated and uncontaminated soil. Diversity

was higher in the uncontaminated (H′ = 2.16) than in the contaminated (H′ = 1.72) soil sample. Further studies are needed

to determine whether the differences between contaminated and non-contaminated soil samples were due to spontaneous

bioremediation microbial activity. [Int Microbiol 2008; 11(2):121-126]
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Introduction

Petroleum is a natural product resulting from the anaerobic

conversion of biomass under high temperature and pressure.

Although most of its components are subject to biodegrada-

tion, this occurs at relatively slow rates. Moreover, petroleum

hydrocarbons are poorly degraded and have thus become the

most widespread environmental contaminant [16]. These

hydrocarbons can be divided into saturates, aromatics, asphal-

tenes (phenols, fatty acids, ketones, esters, porphyrins), and

resins (pyridines, quinolines, carbazoles, sulfoxides, amides)

[22]. These four classes differ in their susceptibility to micro-

bial attack.

Soils are exceptionally complex, highly dynamic systems

that are the product of intimate interactions between biotic

and abiotic processes that have taken place over billions of years.

They are highly porous materials, in which the dynamic mix of

water and air-filled spaces fluctuates according to prevailing envi-

ronmental conditions. The result is a spatially complex environ-

ment that drives the spatial and temporal heterogeneity of micro-

bial diversity [18]. The immense diversity of soil-living microbes

remains, to a large extent, unexplored. This is not surprising since

1 g of soil may harbor up to 1010 microorganisms. 

Ecological diversity is considered to be a function of both

the number of different types (richness or variety) of life
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forms and the relative importance of the individual elements

among them (evenness or equitability). However, appropriate

tools for quantifying microbial diversity in natural communi-

ties are lacking. Recently, the application of molecular tech-

niques in environmental microbiology has provided a door-

way to the discovery of organisms that are difficult to grow

in the laboratory. Sequencing the microbial world will facili-

tate the discovery of hitherto unknown microorganisms and

hitherto unknown functions of microorganisms. Microbial

diversity on Earth is vast, albeit largely unexplored. To date,

55 divisions of Bacteria and 13 divisions of Archaea have

been described. Soil is thought to contain more than 20 bac-

terial divisions, while approximately 12 division are repre-

sented in the Sargasso [6,8,23,24,26]. 

The ability of microbes to degrade organic contaminants

into harmless constituents has been explored as a means to

biologically treat contaminated environments. This approach,

referred to as bioremediation, is the subject of intense labo-

ratory research and in situ applications [25]. Bioremediation

has been increasingly considered as an appropriate strategy

to restore hydrocarbon-contaminated soils in ecologically

protected areas from the Ecuadorian Amazon region, where

both routine deliberate discharges and accidental spills are

common [11]. The bioremediation procedures currently used

in this region include land farming and biopiles combined

with bioaugmentation (inoculation of non-indigenous micro-

organisms). Amazon soils seem to foster lower bacterial

diversities than soils in other regions [5], suggesting that

introduced bacteria are exposed to harsh conditions and com-

petition from well-adapted native bacteria [28]. Additionally,

the introduction of foreign bacterial species in ecologically

protected areas, even if for bioremediation purposes, remains

technically questionable. 

Soils usually contain native microbiota capable of metab-

olizing hydrocarbons [2,8,15,28] and thus of initiating spon-

taneous bioremediation. In this study, culture-dependent and

culture-independent approaches (DNA sequences of the 16S

rRNAV3 region) were used to determine the taxonomic com-

position of bacterial communities present in a sample from

soil contaminated with petroleum and to compare it with the

bacterial communities in a non-contaminated soil sample. 

Materials and methods

Soil samples. Two soil samples (5 cm deep from the surface) were col-

lected in May 2006 in the proximity of an oil well in the northern Ecuadorian

Amazon basin (Francisco de Orellana province). One sample was obtained

from soil contaminated with petroleum (618.3 mg of hydrocarbon per kg)

and the other sample from uncontaminated soil (70.08 mg of hydrocarbon

per kg). The samples were taken from bare soils with apparently similar

characteristics, and the contamination status was established by visual

inspection. 

Isolation of axenic bacterial cultures. A solution of 10 g of soil

in 250 ml of tryptic soy broth (Difco, Detroit, MI) was prepared and incu-

bated at 30°C for 24 h. Ten microliters of the supernatant was streaked on

tryptic soy agar (Difco), and incubated at 30°C for 48 h. 

DNA extraction and polymerase chain reaction. Total DNA

was extracted from 0.5 g of soil samples with the UltraClean Soil DNA purifi-

cation kit (Mo Bio Laboratories, Carlsbad, CA) and following the instructions

provided with the kit. DNA from pure cultures was extracted with DNAzol

(Invitrogen, Carlsbad, CA) following the manufacturer’s instructions.

Successful DNA extraction was determined by agarose gel electrophoresis

(0.8% agarose). Polymerase chain reaction (PCR) amplification was carried

out using the bacterial primers 16SV3f (5´-CCTACGGGAGGCAGCAG-3´)

and 16SV3r (5´-ATTACCGCGGTGCTGG-3´). These primers amplify the

V3 region corresponding to the 16S rRNA gene in the different bacterial

species and to positions 341–534 in E. coli [17]. PCR amplification was done

using pure Taq Ready-To-Go PCR Beads (Amersham Biosciences,

Piscataway, NJ) with 25 μM of each primer. To verify the absence of any

PCR-inhibiting compounds, a control was established by mixing DNA

extracted from soil with E.coli DNA (1:1 dilution). The PCR conditions were

as follows: initial denaturation at 94°C for 4 min, followed by 30 cycles of

denaturation at 94°C for 30 s, primer annealing at 51°C for 30 s, elongation

at 72°C for 30 s, and a final extension step at 72°C for 20 min. 

Cloning of amplicons. Products of three PCR reactions were pooled

and ligated into plasmid pCR 2.1-TOPO (Invitrogen) and introduced into

One Shot TOP10 Chemically competent E. coli (Invitrogen) following the

instructions of the manufacturer (TOPO TA cloning kit, Invitrogen).

Transformed cells were transferred to 250 μl of SOC medium and incubat-

ed at 37ºC for 1 h. A 50-μl aliquot of the transformed cells was spread on LB

agar plates containing 50 μg kanamycin/ml and 40 mg XGal/ml.

Recombinant colonies were isolated, purified by alkaline extraction [21],

and the inserts identified by digestion with EcoRI and subsequent agarose

gel electrophoresis (1.2% agarose). For sequencing purposes, clones were

purified with the SNAP miniprep kit (Invitrogen). Inserts of 109 plasmids

were sent for sequencing to Macrogen (Rockville, MD) but only 53

sequences could be obtained. The inserts were analyzed using BLAST and

the neighbor-joining method. Sequences were submitted to the GenBank

database and assigned accession numbers EF486799 to EF486852.

Bacterial diversity and 16S rRNA gene library compari-
son. Soil bacterial diversity was estimated for the two samples using the

Shannon index (H′′ = –∑pi ln pi), where pi is the proportion of clones of each

phylum and the total clone number (estimated using n/N) [10]. Differences

in bacterial taxonomic composition between the two libraries were assessed

using the LIBSHUFF program version 0.96 [22].

Results and Discussion

The bacterial composition of contaminated and non-contam-

inated soil samples differed significantly (P = 0.005) as

determined by the LIBSHUFF program. Phylogenetic analy-

sis of 16SrRNA gene sequences of uncultured soil samples

showed that Acidobacteria predominated in non-contaminated

soil whereas in contaminated soil Proteobacteria were the

most abundant (Figs. 1 and 2). Oil contamination seemed to
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negatively affect Chloroflexi, Cyanobacteria, Nitrospirae,

and Planctomycetes, which were abundant in the non-con-

taminated sample but absent in the contaminated soil sample.

Soil bacterial phylotype diversity, as estimated by the Shannon

index [10], in the non-contaminated sample was higher

(H′ = 2.16) than that of the contaminated sample (H′ = 1.72).

These data supported the above findings, in that oil contami-

nation seemed to reduce biodiversity and encourage the prop-

agation of Proteobacteria, a bacterial group commonly asso-

ciated with hydrocarbon degradation processes [19,28,30].

The microbiota of uncontaminated soil was unremarkable.

As in soils in different parts of the world, Acidobacteria was

the most abundant bacterial group [7,13,14].

Culture in nutrient media failed to reflect the diversity of

the soil microbiota composition. Most Bacteria isolated from

TSA cultures of contaminated soil were identified as

gammaproteobacteria and Firmicutes, whereas culturable

Bacteria from uncontaminated samples belonged to betapro-

teobacteria, gammaproteobacteria, and Firmicutes (Table 1).

In agreement with previous studies, genomic analysis yielded

more information than direct culture of soil samples in nutri-

ent media [3,9,16,26]. Previous reports indicated that micro-

biological culture boosts fast-growing bacteria and thus may

not reflect bacterial diversity in soils [4,12,29]. 

In some regions of the world, the proliferation of native

degradative bacteria has resulted in spontaneous cleaning

SOIL MICROBIOTA FROM ECUADORIAN AMAZON
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Fig. 1. Phylogenetic trees generated by the neighbor-joining method using DNA sequences corresponding to the V3

region of 16S rRNA from bacteria living in uncontaminated soil. (A) Acidobacteria, Bacteroidetes, and unclassified

Bacteria. (B) Proteobacteria. Numbers correspond to bootstrap values.
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events [2,20,24]. In the Amazon, this process may be

enhanced by the high temperatures and humidity typical of

the region [1]. Future studies should determine whether the

spontaneous changes in bacterial diversity described in this

report correspond to a bioremediation process. Finally, even

though soil samples were collected from the same location

BARRAGÁN ET AL
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Fig. 2. Phylogenetic trees generated by the neighbor-joining method using DNA sequences corresponding to the V3

region of the 16S RNA from bacteria living in oil-contaminated soil. (A) Acidobacteria and Bacteroidetes, (B) Fir-

micutes, (C) Proteobacteria, (D) Cyanobacteria, Chlamydiae, Nitrospirae, Planctomycetes, and Choroflexi. Numbers

correspond to bootstrap values. 
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and from sites that appeared to share similar characteristics,

some of the variation in microbiota composition may have

been due to minor differences in soil composition.
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