Corynebacterium glutamicum as a model bacterium for the bioremediation of arsenic Authors Luís M. Mateos Department of Ecology, Genetics and Microbiology, Area of Microbiology, Faculty of Biology, University of Leon, Spain Efrén Ordóñez Department of Ecology, Genetics and Microbiology, Area of Microbiology, Faculty of Biology, University of Leon, Spain Michal Letek Department of Ecology, Genetics and Microbiology, Area of Microbiology, Faculty of Biology, University of Leon, Spain José A. Gil Department of Ecology, Genetics and Microbiology, Area of Microbiology, Faculty of Biology, University of Leon, Spain Keywords: Corynebacterium glutamicum, arsenic, biorremediation, leaching, toxic metalloids Abstract Arsenic is an extremely toxic metalloid that, when present in high concentrations, severely threatens the biota and human health. Arsenic contamination of soil, water, and air is a global growing environmental problem due to leaching from geological formations, the burning of fossil fuels, wastes generated by the gold mining industry present in uncontrolled landfills, and improper agriculture or medical uses. Unlike organic contaminants, which are degraded into harmless chemical species, metals and metalloids cannot be destroyed, but they can be immobilized or transformed into less toxic forms. The ubiquity of arsenic in the environment has led to the evolution in microbes of arsenic defense mechanisms. The most common of these mechanisms is based on the presence of the arsenic resistance operon (ars), which codes for: (i) a regulatory protein, ArsR; (ii) an arsenite permease, ArsB; and (iii) an enzyme involved in arsenate reduction, ArsC. Corynebacterium glutamicum, which is used for the industrial production of amino acids and nucleotides, is one of the most arsenic-resistant microorganisms described to date (up to 12 mM arsenite and >400 mM arseniate). Analysis of the C. glutamicum genome revealed the presence of two complete ars operons (ars1 and ars2) comprising the typical three-gene structure arsRBC, with an extra arsC1´ located downstream from arsC1 (ars1 operon), and two orphan genes (arsB3 and arsC4). The involvement of both ars operons in arsenic resistance in C. glutamicum was confirmed by disruption and amplification of those genes. The strains obtained were resistant to up to 60 mM arsenite, one of the highest levels of bacterial resistance to arsenite so far described. Using tools for the genetic manipulation of C. glutamicum that were developed in our laboratory, we are attempting to obtain C. glutamicum mutant strains able to remove arsenic from contaminated water. [Int Microbiol 2006; 9(3):207-215] Downloads PDF Published 2010-02-24 Issue Vol. 9 No. 3 (2006) Section Research Reviews License Submission of a manuscript to International Microbiology implies: that the work described has not been published before, including publication in the World Wide Web (except in the form of an Abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that all the coauthors have agreed to its publication. The corresponding author signs for and accepts responsability for releasing this material and will act on behalf of any and all coauthors regarding the editorial review and publication process.If an article is accepted for publication in International Microbiology, the authors (or other copyright holder) must transfer to the journal the right–not exclusive–to reproduce and distribute the article including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature. Nevertheless, all article in International Microbiology will be available on the Internet to any reader at no cost. The journal allows users to freely download, copy, print, distribute, search, and link to the full text of any article, provided the authorship and source of the published article is cited. The copyright owner's consent does not include copying for new works, or resale. In these cases, the specific written permission of International Microbiology must first be obtained.Authors are requested to create a link to the published article on the journal's website. The link must be accompanied by the following text: "The original publication is available on LINK at <http://www.im.microbios.org>. Please use the appropiate URL for the article in LINK. Articles disseminated via LINK are indexed, abstracted, and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.