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Towards the identification
of the common features of
bacterial biofilm development

Summary. Microorganisms can live and proliferate as individual cells swim-
ming freely in the environment, or they can grow as highly organized, multicellu-
lar communities encased in a self-produced polymeric matrix in close association
with surfaces and interfaces. This microbial lifestyle is referred to as biofilms. The
intense search over the last few years for factors involved in biofilm development
has revealed that distantly related bacterial species recurrently make use of the
same elements to produce biofilms. These common elements include a group of
proteins containing GGDEF/EAL domains, surface proteins homologous to Bap of
Staphylococcus aureus, and some types of exopolysaccharides, such as cellulose
and the poly-B-1,6-N-acetylglucosamine. This review summarizes current knowl-
edge about these three common elements and their role in biofilm development.
[Int Microbiol 2006; 9(1):21-28]
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Bap protein

Introduction

If we queried microbiologists about landmark events in
microbiology in the last decade, we would probably obtain a
wide consensus focused on two subjects, the availability of
complete bacterial genomes and the recognition that biofilms
represent the natural way of bacterial life outside laboratory
flasks. At the end of the nineteenth century, Robert Koch,
Louis Pasteur, and others established the methodology to
work with microbial pure cultures. Since then, microbiolo-
gists have carried out most of their studies with bacteria
grown planktonically (swimming freely in liquid media).
However, direct observation of bacteria in natural settings
has shown that they usually grow adhered to surface—liquid
or liquid—air interfaces and embedded in a self-produced

This article is based on the closing lecture of the 20th National Congress of
the Spanish Society for Microbiology (SEM), given by the author in
Céceres, Spain, on September 22, 2005, on the occasion of his receiving the
11th SEM Biennial Prize.

Key words: biofilms - PIA/PNAG - cellulose - ¢-di-GMP - GGDEF proteins -

extracellular polymeric matrix [10-12]. Examples of this
bacterial lifestyle are abundant in daily life: the slimy mate-
rial that covers flower vases, pipelines, submerged rocks, and
even the surface of teeth (Fig. 1).

Biofilm formation occurs through sequential steps in
which the initial attachment of planktonic bacteria to a solid
surface is followed by their subsequent proliferation and
accumulation in multilayer cell clusters, and the final forma-
tion of the bacterial community enclosed in a self-produced
polymeric matrix. Once the structure has developed, some
bacteria are released into the liquid medium, enabling the
biofilm to spread over the surface [24,25,44,55] (Fig. 2).

The composition of the extracellular matrix is complex
and variable among different bacterial species and even
within the same species under different environmental con-
ditions. Despite their heterogeneous composition, exo-
polysaccharides are an essential compound of the biofilm
matrix, providing the framework into which microbial cells
are inserted [8]. Among the many different exopolysaccha-
rides that have been described, cellulose and [3-1,6-linked
N-acetylglucosamine are the most common components of
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the biofilm matrix of many different bacteria. The synthesis
of exopolysaccharides incorporated into the extracellular
matrix is highly regulated, and recent evidence has revealed
that different bacteria use the same secondary signal, c-di-
GMP, for this purpose. Since the levels of ¢c-di-GMP in the
cytoplasm depend on the activity of proteins containing a
GGDEF/EAL domain, these proteins also represent a com-
mon factor in biofilm development. Besides exopolysaccha-
rides, surface proteins also play an important role in biofilm
formation. Most of the surface proteins involved in biofilm

Fig. 1. Scanning electron micrograph of the
biofilm pellicle produced by Salmonella enteri-
tidis in the air-liquid interphase of Luria-Bertani
(LB) medium after 3 days of incubation at room
temperature (bar =2 pum).

formation share several structural and functional features,
and, consequently, the existence of a group of surface pro-
teins has been proposed [34]. The first member of this group
was described in a Staphylococcus aureus bovine mastitis
isolate and was named Bap, for biofilm associated protein.
Bearing in mind that biofilm formation represents the
normal lifestyle of bacteria in the environment, and that all
microbes can make biofilms, it is reasonable to assume that
there are a set of common principles for biofilm formation.
This review summarizes evidence showing that cellulose,
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Fig. 2. The development of a biofilm, depicted as a five-stage process. Stage 1: initial attachment of cells to the surface; stage 2: production of the extracel-
lular exopolysaccharide matrix; stage 3: early development of biofilm architecture; stage 4: maturation of biofilm architecture; stage 5: dispersion of bacte-

rial cells from the biofilm.
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B-1,6-linked N-acetylglucosamine, GGDEF-domain-contain-
ing proteins, and Bap-related proteins are common elements
of the biofilm formation process among bacteria.

Common exopolysaccharides
in the biofilm matrix

The efforts of many laboratories allowed the purification and
characterization of the main exopolysaccharide compound of
the biofilm matrix of Staphylococcus epidermidis—a linear
homoglycan of B-1,6-linked N-acetylglucosamine, named
PIA, for polysaccharide intercellular adhesin [4,9,36,37,60].
Later, a PIA-related exopolysaccharide, PNAG, whose chem-
ical composition is based on that of poly-B-1,6-linked N-
acetylglucosamine, was described in S. aureus [41,38]. The
double assignation of PIA and PNAG to a similar polysac-
charide in two closely related bacteria caused some confu-
sion in the literature. Moreover, it has been shown that PIA
and PNAG are structurally and inmunologically identical
[51], and that both are synthesized by the action of four
homologous proteins (IcaA, IcaD, IcaB, and IcaC) encoded
by genes organized in a single operon (icaADBC) [13,26].

During the screening of a collection of transposon
mutants to identify genes required for biofilm formation in
Escherichia coli, a locus (pgaABCD) exhibiting significant
similarity to the icaADBC operon of S. aureus was identified
[63]. PgaABCD proteins are involved in the synthesis of an
unbranched [B-1,6-linked N-acetylglucosamine identical to
PIA/PNAG. A search for conserved protein domains predicted
that PgaC is a N-glycosyltransferase homologous to IcaA
(35% amino acid identity and 57% similarity). PgaB is a
lipoprotein with putative polysaccharide N-deacetylase
domains similar to those of IcaB. PgaA and PgaD have no
functional homologies. As predicted, PGA exopolysaccha-
ride serves as an adhesin that stabilizes biofilm formation
under a variety of growth conditions, although it is not the
only polysaccharide that is necessary for biofilm develop-
ment in E. coli.

Another example of the relationship between [B-1,6-
linked N-acetylglucosamine and the biofilm formation
process is provided by the periodontopathogen Actinoba-
cillus actinomycetemcomitans [31,32]. Kaplan et al. [32]
identified a protein, dispersin B, that is capable of degrading
its own biofilm matrix as well as the biofilm matrix of S. epi-
dermidis. Moreover, they also showed that the exopolysac-
charide produced by pgaABCD cross-reacted with an anti-
serum raised against PIA/PNAG of S. aureus. Homologues
of icaADBC and pgaABCD have also been described in the
genomes of several other bacteria, including Yersinia pestis,

Yersinia enterocolytica, Bordetella pertussis, Bordetella
bronchiseptica, Burkholderia cepacia, Pseudomonas fluo-
rescens, Ralstonia solanacearum, Photobacterium profun-
dum, and Chromobacterium violaceum [22,32]. The presence
of these genes strongly suggests that production of the biofilm
matrix component [-1,6-linked N-acetylglucosamine exo-
polysaccharide is widely conserved among eubacteria.

Cellulose production is considered to be characteristic of
the plant kingdom; however, the ability of some bacteria to
produce extracellular cellulose has long been recognized.
Gluconacetobacter xylinum (formerly called Acetobacter
xylinum) has served as the model organism for elucidating
the basic features of cellulose biosynthesis in bacteria
[48-50]. The production of cellulose has also been described
in Agrobacterium tumefaciens and Rhizobium legumino-
sarum bv. Trifolii, some species of cyanobacteria, and the
gram-positive bacterium Sarcina ventriculi [40,42,43,48].
Initially, the proposed function for cellulose in these bacteria
was not linked with biofilm formation. Instead, cellulose pro-
duction was thought to be involved in the maintenance of
G. xylinum in an oxic liquid environment and for the anchor-
ing of Rhizobium and A. tumefaciens to plant tissue. Recent
studies on the biofilm formation process of Salmonella enter-
ica ser. Typhimurium (S. Typhimurium) and E. coli have
revealed that these bacteria, as well as many other species of
the Enterobacteriaceac family, such as Citrobacter spp.,
Enterobacter spp., and Klebsiella spp., produce cellulose as
a crucial component of the bacterial extracellular matrix
[53,64,65].

Studies carried out in a murine and a chicken model to
determine the role of cellulose production on Salmonella vir-
ulence showed that cellulose does not play a significant role
in the pathogenic process of Salmonella. Nevertheless, cellu-
lose-deficient mutants proved to be more sensitive to chlorine
treatment, suggesting that cellulose production and biofilm
formation are important to bacterial survival on surface envi-
ronments [53]. The connection between cellulose and biofilm
formation has encouraged a reevaluation of the function of
cellulose production by A. tumefaciens. In this bacterium, cel-
lulose production is related to biofilm formation on plant
roots and does significantly affect virulence [39].

Besides the finding that the same exopolysaccharides are
used by diverse bacterial species to produce the biofilm
matrix, it is particularly interesting that a single bacterial
species, such as E. coli, has the capacity to produce several
different extracellular polysaccharides, including B-1,6-
linked N-acetylglucosamine, cellulose, and colanic acid.
This situation raises many intriguing questions: Are these
different exopolysaccharides simultaneously produced?
What properties does each polysaccharide provide to bacte-
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rial multicellular behavior? What is the regulatory mecha-
nism that guarantees the coordinated expression of different
exopolysaccharides?

GGDEF-domain-containing proteins
and biofilm formation

In a pioneering study that characterized the regulatory ele-
ments involved in cellulose production in G. xylinum,
Benziman and colleagues [50] discovered that cellulose syn-
thase was allosterically activated by c-di-GMP, and proposed
a hypothetical model for the regulation of cellulose synthesis
in this bacterium. In this model, they anticipated that the
level of c-di-GMP in the cell is affected by the opposing
action of two enzymes, diguanylate cyclase and phosphodi-
esterase (Fig. 3). The function of c-di-GMP in the bacterial
physiology almost went unnoticed until a key paper by Tal et
al. [56] related c-di-GMP metabolism with proteins contain-
ing a GGDEF and an EAL domain. These domains contain
approximately 180 and 240 residues, respectively, and they
very often include the conserved motifs Gly-Gly-Asp-Glu-
Phe and Glu-Ala-Leu, which are used to name such domains.
Bacterial genome sequencing has shown that GGDEF and EAL
proteins are present in the majority of bacteria [19], starting
from the ancient hyperthermophilic Thermotogales [30]. Thus,
over 2200 proteins with GGDEF/EAL domains are currently
contained in protein databases. Interestingly, these domains are
not present in any protein encoded by the genomes of any
Archaea or Eukarya, suggesting that c-di-GMP is a trait exclu-
sive to the bacterial kingdom.

In the last two years, there has been an explosion of func-
tional descriptions of GGDEF and EAL domain proteins in

various bacteria. Most of these proteins have been related to
exopolysaccharide production in biofilms [5,6,7,16,20,21,
23,33,45,51,54,59] but there are also examples of GGDEF
proteins involved in the differentiation process of Caulo-
bacter crescentus [1], motility and sessility in Escherichia,
Salmonella and Pseudomonas aeruginosa [28,52], photosyn-
thesis gene expression in Synecchococcus elongatus [58],
and virulence in S. Typhimurium [27].

GGDEF and EAL domains are usually found in multido-
main proteins linked to signal sensing and signal transduction
domains. This location suggests that the GGDEF domain rep-
resents a novel, complex, bacterial signal-transduction net-
work that is able to convert signals from different cellular
compartments into the production of a secondary messenger,
c-di-GMP [17,18,29]. The question is how the different sig-
nals can induce the appropriate response, if all of them con-
verge in a central, freely diffusible cellular pool of c-di-GMP.
An illustrative example showing that different GGDEF pro-
teins of the same bacteria can influence the same metabolic
pathway was found by our group in S. Typhimurium [20].
Eleven proteins containing the GGDEF domain had been
annotated in the complete genome of S. Typhimurium. Apart
from AdrA, a GGDEF protein required for cellulose synthe-
sis, none of the remaining GGDEF proteins had been charac-
terized [47]. A systematic complementation experiment, in
which each of these GGDEF proteins was expressed from a
multicopy plasmid in an AdrA mutant, revealed that four
other GGDEF proteins (Stm1987, Stm4551, YegE, Stm3388)
bestowed the capacity to produce cellulose to the adrA
mutant [20]. The simplest interpretation of these results is
that, as GGDEF proteins share the final product of their enzy-
matic activity, overexpression of one of these proteins can
bypass the absence of other members of the family.
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Fig. 3. Structure of the cyclic dinucleotide
c-di-GMP.
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The observation that many bacterial genomes have multi-
ple open reading frames with putative GGDEF/EAL domains
also raises several interesting questions. First, why is the
number of putative GGDEF/EAL domain-containing pro-
teins so variable among diverse bacterial species: 66/33
(GGDEF/EAL domain-containing proteins) in the Vibrio vul-
nificus genome, 33/21 proteins in P. aeruginosa, 19/17 pro-
teins in E. coli, 4/3 in Bacillus subtilis, 2/0 in S. aureus, and
0/0 proteins in Chlamydia trachomatis, Mycoplasma pneu-
moniae, and Helicobacter pylori [19,46]? Second, if the per-
turbation of c-di-GMP levels caused by disruption of a single
member of the family often leads to physiological changes,
why can the activity of the remnant members of the family
not compensate the deficiency of the one member of the fam-
ily? Third, how do bacteria coordinate the expression and
activity of all these proteins so that adequate levels of c-di-
GMP are reached? Fourth, often a GGDEF and EAL domain
occur in the same protein, whereby the GGDEF domain is
located N-terminal to the EAL; if the two domains are respon-
sible for opposing functions, is there a hierarchical or additive
relationship between them? Fifth, why have most of these pro-
teins gone unnoticed up to now? Sixth, how does c-di-GMP
influence the activity of the target proteins? Concerning the last
question, a very recent paper of Amikan and Galperin [2]
described the identification of a new domain, PilZ, which is
present in the sequences of bacterial cellulose synthases, an
alginate biosynthesis protein, and many other proteins. Based
on sequence analysis and on the phenotypes already described
for mutants in proteins containing this domain, the authors pro-
posed that PilZ is a part of the bacterial c-di-GMP binding
protein.

It becomes obvious that, in the next few years, character-
ization of GGDEF/EAL proteins and the signal transduction
mechanism mediated by c-di-GMP will be a very exciting
area of research in microbiology.

Bap-related proteins
in biofilm formation

A group of surface proteins sharing several structural and func-
tional features is emerging as an important element of biofilm
formation by diverse bacterial species [34]. The first member
of this group was identified in a S. aureus mastitis isolate,
strain V329, and was named Bap (biofilm associated protein).
As common structural features, all Bap-related proteins: (i) are
present on the bacterial surface; (ii) are of high molecular
weight; (iii) contain a core domain of tandem repeats; (iv) con-
fer on bacteria the capacity to form a biofilm; and (v) play a
relevant role during bacterial infectious processes.

We identified Bap during screening of a library of mu-
tants generated from S. aureus strain V329, and found that
the protein is essential for biofilm formation [14]. Primary
attachment, intercellular aggregation, and biofilm formation
studies showed that Bap promotes both primary attachment
to abiotic surfaces and intercellular adhesion. Since disrup-
tion of the bap gene provoked a decreased accumulation of
PIA/PNAG, the main exopolysaccharide of the biofilm
matrix of S. aureus, our first interpretation was that biofilm
deficiency of Bap mutant strains was mainly caused by a
decreased accumulation of PIA/PNAG. However, when the
icaADBC operon was inactivated in a bap-positive strain, the
bacteria retained the capacity to produce biofilm [15]. In
agreement with this result, we have observed that all the
staphylococcal isolates tested that harbor the bap gene are
strong biofilm producers, despite the fact that most of them
do not contain the icaADBC operon [62]. These findings
indicate that Bap is able to mediate a mechanism of biofilm
development that differs from the PIA/PNAG-dependent
mechanism.

Bap of S. aureus is a 2276-amino-acid surface protein with
a multidomain architecture characteristic of surface-associated
proteins from gram-positive bacteria (Fig. 4). The N-terminal
domain (819 amino acids) includes a signal sequence for extra-
cellular secretion and, for the most part, is devoid of repeti-
tions. The region encompassing amino acid residues 8202148
is composed of 13 identical repeats, each of which is 86 amino
acids long. The C terminus of Bap contains a typical cell-wall
attachment region comprising an LPXTG motif, a hydropho-
bic transmembrane sequence, and positively charged amino
acids. Bap contains four sites with >80% similarity to the con-
sensus EF-hand motif. It has been shown that addition of mil-
limolar amounts of calcium to the growth medium inhibits
intercellular adhesion and biofilm formation, whereas calcium
depletion enhances bacterial aggregation in liquid medium [3].
Gene bap has never been found in S. aureus human isolates,
strongly suggesting that human and ruminant mastitis isolates
are not clonally related, and that specific host-dependent path-
ogenic factors evolved independently in humans and rumi-
nants. In spite of this, the presence of bap is not restricted to
Staphylococcus aureus, and bap ortholog genes have been
found in isolates of several coagulase-negative staphylococcal
species, including S. epidermidis, S. chromogenes, S. xylosus,
S. simulans, and S. hyicus [62].

Since the finding of Bap, different Bap-related surface
proteins involved in biofilm formation by diverse bacterial
species have been described. Among these proteins, our
group has shown that Esp (enterococcal surface protein) of
Enterococcus faecalis and the protein encoded by stm2689 of
S. Typhimurium are involved in biofilm formation by these
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bacteria [35]. Esp is a 1873-amino-acid surface protein, and
its N-terminal domain shows 33% homology with that of Bap
(Fig. 4). The central part of Esp has a series of nearly identi-
cal 246-nucleotide tandem C-repeats. Sequence analysis
comparison of the C-repeats of Bap and Esp shows 33%
identity. An epidemiological study demonstrated a strong
correlation between the presence of Esp and the ability of E.
faecalis to form biofilms in vitro [61]. None of the esp-defi-
cient isolates tested in that study were capable of forming
biofilms and expression of Esp in an esp-negative strain
restored biofilm formation by E. faecalis [57,61]. The func-
tional relationship between Bap and Esp was unambiguously
demonstrated when heterologous expression of Bap best-
owed biofilm formation capacity to an E. faecalis esp-defi-
cient and biofilm-deficient strain (our unpublished results).
Stm2689 codes for the second largest protein of the S. ente-
rica ser. Typhimurium (S. Typhimurium) genome. The protein
contains 28 tandem imperfect repeats of 86—106 amino acids
(amino acids 159-3003). Each repeat of Stm2689 shows, on
average, a 29% identity with a C-repeat of Bap (Fig. 4).
Given the in silico homology exhibited by Stm2689 and Bap,
we completely deleted stm2689 in a clinical S. enteritidis
strain. The mutant strain lost the capacity to form a biofilm
pellicle in Luria-Bertani (LB) medium at the air—broth inter-
face, whereas overexpression of a chromosomal copy of
stm2689 increased the thickness and strength of the biofilm
formed. The deficiency of Stm2689 could be counteracted by
overproduction of curli fimbriae but not cellulose. This result
supports the idea that Stm2689 plays a role complementary
to that of fimbriae in connecting cells, either by strengthen-
ing fimbriae-mediated interactions or by allowing the inter-
connection of bacteria separated by relatively long distances.
Based on these results, stm2689 was renamed as bapA [35].

To promote biofilm development, Bap proteins might inter-
act with themselves through homophilic mechanism, func-
tioning as both receptor and ligand between two bacterial
clusters. In support of this hypothesis, we have found that
when BapA-overexpressing and BapA-minus cells were
mixed together, the pellicle almost exclusively contained
BapA-positive bacteria [35]. These results suggest that the
presence of BapA on the surface of the cell is necessary to
mediate bacterial recruitment into the biofilm pellicle, and
that the presence of BapA on the surface of one bacterium
might not compensate for the absence of the protein on the
surface of a BapA-deficient bacterium.

Conclusions

Significant progress in the understanding of many key
aspects of bacterial biofilm development has been made in
the last few years. One consequence of these advances is the
identification of elements persistently involved in biofilm
formation in distantly related bacteria. Some of the common
elements were described in this review, but the list is proba-
bly far from being complete and new common elements will
no doubt be identified in the near future. Identification of
these common elements, used by different bacteria to pro-
duce biofilms under different environmental conditions, will
provide important clues about the general mechanism of bac-
terial multicellular behavior.
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Hacia la identificacion de las caracteristicas
comunes del desarrollo de biopeliculas
bacterianas

Resumen. Los microorganismos pueden vivir y proliferar como células
individuales que nadan libremente en el medio o crecer en comunidades
multicelulares muy bien organizadas dentro de una matriz que ellas mismas
han sintetizado y asociadas a superficies o interfases. Esta forma de vida mi-
crobiana recibe el nombre de biopeliculas. La busqueda intensa de los
factores que intervienen en el desarrollo de la biopelicula llevada a cabo
estos ultimos afios ha revelado que especies bacterianas filogenéticamente
alejadas recurren a los mismos elementos para producir la biopelicula. Entre
los elementos comunes identificados hay proteinas que contienen los domi-
nios GGDEF/EAL, proteinas de superficie que muestran homologia con la
proteina Bap de Staphylococcus aureus, y algunos exopolisacaridos, como la
celulosa y la poli-B-1,6-N-acetilglucosamina. Esta revision resume los cono-
cimientos actuales sobre estos tres elementos y su funcion en la formacion
de la biopelicula. [Int Microbiol 2006; 9(1):21-28]

PIA/PNAG - celulosa -

Palabras clave: biopeliculas - c-di-GMP -

proteinas GGDEF - proteina Bap

Para a identificacao das caracteriticas
comuns do desenvolvimento de biofilmes
bacterianos

Resumo. Os microorganismos podem viver e proliferar como células
individuais que nadam livremente no meio ou crescer em comunidades
multicelulares muito bem organizadas embebidas em uma matriz sinte-
tizada pelos proprios microorganismos e associadas a superficies ou inter-
faces. Esta forma de vida microbiana recebe o nome de biofilmes. A
busqueda intensa de fatores implicados no desenvolvimento do biofilme
durante os ultimos anos revelou que espécies bacterianas filogenetica-
mente afastadas recorrem aos mesmos elementos para produzir o biofilme.
Os elementos comuns identificados incluem proteinas que contém os
dominios GGDEF/EAL, proteinas de superficie que apresentam homolo-
gia com a proteina Bap de Staphylococcus aureus e exopolissacarideos
como celulose e poli-B-1,6-N-acetilglucosamina. Esta revisdo resume os
conhecimentos atuais em relagdo a estes trés elementos e sua fungdo na
formagdo do biofilme. [Int Microbiol 2006; 9(1):21-28]

Palavras chave: biofilme - PIA/PNAG - celulose - c-di-GMP - proteinas
GGDEF - proteina Bap



