Gene clusters for β-lactam antibiotics and control of their expression: why have clusters evolved, and from where did they originate? Authors Paloma Liras Biotechnological Institute, Scientific Park of Leon, Spain, and Microbiology Area, Faculty of Biological and Environmental Sciences, University of Leon, Spain Juan F. Martín Biotechnological Institute, Scientific Park of Leon, Spain, and Microbiology Area, Faculty of Biological and Environmental Sciences, University of Leon, Spain Keywords: β-lactam antibiotics, antibiotic biosynthesis, metabolic regulation, gene clusters, microbial evolution Abstract While β-lactam compounds were discovered in filamentous fungi, actinomycetes and gram-negative bacteria are also known to produce different types of β-lactams. All β-lactam compounds contain a four-membered β-lactam ring. The structure of their second ring allows these compounds to be classified into penicillins, cephalosporins, clavams, carbapenens or monobactams. Most β-lactams inhibits bacterial cell wall biosynthesis but others behave as β-lactamase inhibitors (e.g., clavulanic acid) and even as antifungal agents (e.g., some clavams). Due to the nature of the second ring in β-lactam molecules, the precursors and biosynthetic pathways of clavams, carbapenems and monobactams differ from those of penicillins and cephalosporins. These last two groups, including cephamycins and cephabacins, are formed from three precursor amino acids that are linked into the α-aminoadipyl-L-cysteinyl-D-valine tripeptide. The first two steps of their biosynthetic pathways are common. The intermediates of these pathways, the characteristics of the enzymes involved, the lack of introns in the genes and bioinformatic analysis suggest that all of them should have evolved from an ancestral gene cluster of bacterial origin, which was surely transferred horizontally in the soil from producer to non-producer microorganisms. The receptor strains acquired fragments of the original bacterial cluster and occasionally inserted new genes into the clusters, which once modified, acquired new functions and gave rise to the final compounds that we know. When the order of genes in the Streptomyces genome is analyzed, the antibiotic gene clusters are highlighted as gene islands in the genome. Nonetheless, the assemblage of the ancestral β-lactam gene cluster remains a matter of speculation. [Int Microbiol 2006; 9(1):9-19] Downloads PDF Published 2010-02-25 Issue Vol. 9 No. 1 (2006) Section Research Reviews License Submission of a manuscript to International Microbiology implies: that the work described has not been published before, including publication in the World Wide Web (except in the form of an Abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that all the coauthors have agreed to its publication. The corresponding author signs for and accepts responsability for releasing this material and will act on behalf of any and all coauthors regarding the editorial review and publication process.If an article is accepted for publication in International Microbiology, the authors (or other copyright holder) must transfer to the journal the right–not exclusive–to reproduce and distribute the article including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature. Nevertheless, all article in International Microbiology will be available on the Internet to any reader at no cost. The journal allows users to freely download, copy, print, distribute, search, and link to the full text of any article, provided the authorship and source of the published article is cited. The copyright owner's consent does not include copying for new works, or resale. In these cases, the specific written permission of International Microbiology must first be obtained.Authors are requested to create a link to the published article on the journal's website. The link must be accompanied by the following text: "The original publication is available on LINK at <http://www.im.microbios.org>. Please use the appropiate URL for the article in LINK. Articles disseminated via LINK are indexed, abstracted, and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.