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Widespread occurrence 
of non-phosphorylating
glyceraldehyde-3-phosphate
dehydrogenase among
gram-positive bacteria

Introduction 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an
enzyme involved in central pathways of carbon metabolism.
The most common form of GAPDH is the NAD+-dependent
enzyme (EC 1.2.1.12) found in all organisms so far studied
and located in the cytoplasm. This enzyme plays a role in the
Embden-Meyerhoff pathway not only in glycolysis but also
in gluconeogenesis [8]. NADP+-dependent GAPDH (EC
1.2.1.13), located in the chloroplast stroma and the cyanobac-

terial cytoplasm, is involved in photosynthetic CO2 assimila-
tion [3,5,33]. The non-phosphorylating glyceraldehyde-3-
phosphate dehydrogenase (GAPDHN; EC 1.2.1.9) is encod-
ed by the nuclear gene gapN and is ubiquitous among photo-
synthetic eukaryotes. While the enzyme is thought to metab-
olize trioses exported from the chloroplast, its precise func-
tion remains to be established [25,30]. It does, however, cat-
alyze the oxidation of glyceraldehyde-3-phosphate (G3P) to
3-phosphoglycerate (3-PGA) with the reduction of NADP+

to NADPH. No inorganic phosphate is required and the reac-
tion is irreversible under physiological conditions. This is in
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Summary. The non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase
(GAPDHN, NADP+-specific, EC 1.2.1.9) is present in green eukaryotes and some
Streptococcus strains. The present report describes the results of activity and
immunoblot analyses, which were used to generate the first survey of bacterial
GAPDHN distribution in a number of Bacillus, Streptococcus and Clostridium
strains. Putative gapN genes were identified after PCR amplification of partial 700-bp
sequences using degenerate primers constructed from highly conserved protein
regions. Alignment of the amino acid sequences of these fragments with those of
known sequences from other eukaryotic and prokaryotic GAPDHNs, demonstrat-
ed the presence of conserved residues involved in catalytic activity that are not
conserved in aldehyde dehydrogenases, a protein family closely linked to
GAPDHNs. The results confirm that the basic structural features of the members
of the GAPDHN family have been conserved throughout evolution and that no
identity exists with phosphorylating GAPDHs. Furthermore, phylogenetic trees
generated from multiple sequence alignments suggested a close relationship
between plant and bacterial GAPDHN families. [Int Microbiol 2005; 8(4):251-
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contrast to the reversibility of NAD+- and NADP+-dependent
phosphorylating GAPDH reactions, which require inorganic
phosphate to oxidize G3P into diphosphoglyceric acid [5,30].
GAPDHN was originally reported to be exclusively present in
green eukaryotes, and GAPDHN activity was first found in the
cytosolic protein fraction of leaf tissues, endosperm, and the
cotyledons of plants [21]. This was followed by the discovery
of GAPDHN activity in other photosynthetic eukaryotes, e.g.
in different algae [18,25]. However, early reports of a non-
phosphorylating GAPDH activity in Streptococcus mutans [4]
were confirmed later by molecular data [2]. This strain lacks
the two oxidative enzymes of the hexose monophosphate path-
way, glucose-6-phosphate dehydrogenase and 6-phosphoglu-
conate dehydrogenase [4], and as a consequence must use
alternative mechanisms, implicating GAPDHN, to generate
NADPH for reductive biosynthetic reactions. Recently, we
have cloned the gapN genes from Clostridium acetobutylicum
and Streptococcus pyogenes and expressed them in Escheri-
chia coli. The recombinant GAPDHNs produced were purified
and their physical and catalytic properties investigated [15,16].
The results showed that these genes effectively encoded
GAPDHN proteins with enzymatic characteristics similar to
those previously described.

The GAPDHN of higher plants [10,11] and bacteria [2]
consists of a subunit of about 490 amino acids. The active
enzyme in plants is a homo-tetramer of about 190 kDa, as
determined from beet, Chlamydomonas reinhardtii, and
Hevea brasiliensis [18,19,27]. The enzyme from S. mutans,
C. acetobutylicum, and S. pyogenes is a homotetramer with
subunit molecular masses of 51, 50, and 55 kDa, respectively
[15,16,22].

The amino acid sequences of GAPDHNs align well with
those of aldehyde dehydrogenases (ALDH), demonstrating
that they are members of the large ALDH superfamily, shar-
ing an amino acid identity of 20–30%. Thus, GAPDHNs
clearly differ from phosphorylating GAPDHs both in pri-
mary structure and molecular mass [10,18,17]. Bacterial and
plant enzymes of the GAPDHN family have a much closer
affiliation among each other than with other enzymes of the
ALDH superfamily. For example, S. mutans GAPDHN
shows about 50% amino acid identity with the enzyme of
photosynthetic eukaryotes [11]. By contrast, the archaeon
Methanococcus jannaschii has a non-phosphorylating
GAPDH with ferredoxin-dependent activity, but the
sequence of the enzyme is distinctly separate from that of
NADP+-dependent GAPDHNs [11]. To clarify the distribu-
tion of GAPDHN in bacteria, we surveyed the occurrence
and activity of the enzyme in several bacterial strains, apply-
ing a molecular genetic approach to gather more information
on the enzyme’s distribution.

Material and methods 

Strains and culture conditions. Clostridium acetobutylicum
ATCC 824 and ATCC 859, C. perfringens ATCC 13124, C. pasteurianum
ATCC 6013, C. difficile ATCC 11011 and C. sporogenes CIP 79.39 strains
were grown in trypticase-yeast-extract-glucose (TYA) broth [26] at 37ºC in
an anoxic chamber within a nitrogen atmosphere. Streptococcus pyogenes
[16], S. agalactiae ATCC 13813 and isolated Streptococcus sp. strains were
grown in Todd Hewitt broth (THY) medium containing 0.2% (w/v) yeast
extract [1]. Bacillus megaterium ATCC 14945, B. subtilis ATCC 6633, B.
thuringiensis ATCC 10792, Staphylococcus aureus ATCC 25923, Myco-
bacterium tuberculosis ATCC 27294, Pseudomonas aeruginosa ATCC
9027, Bacteroides fragilis ATCC 25285, Enterococcus faecium CIP 54.32,
and E. hirae ATCC 10541, and isolated Bacillus sp., B. licheniformis, and B.
cereus [14], were grown at 37ºC in Luria-Broth (LB) medium [29].
Neisseria meningitidis M13 was grown at 37ºC on GCB medium (Difco
Laboratories, USA) [20]. Lactobacillus brevis ATCC 14869, L. paracasei
ATCC 25598, L. plantarum ATCC 8014, and L. lactis CNRZ 548 were
grown at 25°C in MRS medium [7]. 

Cell-free extract preparation. Liquid culture cells were harvested
by centrifugation at 8,000 × g for 15 min at 4ºC. Cell pellets were washed
twice in 25 mM Tris-HCl (pH 7.5) and resuspended in the same buffer sup-
plemented with 2 mM dithiothreitol (DTT), 1 mM phenylmethylsulfonyl
fluoride (PMSF), and 10% (v/v) glycerol. Cells were then disrupted by ultra-
sonic treatment in a chilled water bath using a Branson 25U sonifier at medi-
um strength. The resulting suspension was centrifuged at 20,000 × g for 20
min to obtain the cell-free extract. 

Enzyme assays. GAPDHN activity was measured as described else-
where [34]. The reaction was started by the addition of 10 µg of cell-free
extract to an assay mixture containing 50 mM Tricine buffer (pH 8.5), 1 mM
NADP+, and 1 mM D-glyceraldehyde-3-phosphate at 25ºC. Absorbance at
340 nm was followed in a spectrophotometer (model 6405, Jenway,
Dunmow, UK). Phosphorylating NAD+-dependent GAPDH activity was
measured using the same procedure but employing NAD+ (1 mM) and inor-
ganic phosphate or arsenate (10 mM) in the reaction solution. 

Protein immunodetection. Immunoblot assays of protein samples
were carried out after SDS-PAGE [12% (w/v) polyacrylamide slab gels] as
described in [15] for C. acetobutylicum.

PCR methodology and DNA sequencing. Amplification of ca. 0.7-kb frag-
ments of gapN genes from diverse bacterial genomic DNA samples was car-
ried out by PCR using degenerate primers from two highly conserved
regions at the N-terminal and C-terminal ends of GAPDHN proteins
(NPCO1: 5′-C(T)TA(G)GCT(CAG)ATT(CA)T(A)C(G)T(C)CCT(CAG)TT
T(C)AAT(C)-3′, and NPCO2: 5′-CCT(CAG)GGT(CAG)TTT(C)CCT(CA
G)GAA(G)GAA(G)TGG-3′). Amplification conditions were: cycle 1, 92°C
for 2 min; cycles 2–36, 92°C for 1 min, 45°C for 1 min, and 72°C for 1 min;
cycle 37, 72°C for 30 min. Chromosomal DNA was isolated using a Wizard
Kit (Promega, Madison, USA). The amplified reaction was visualized on
0.8 % (w/v) agarose gels with the addition of ethidium bromide according to
[29]. PCR-amplified DNA fragments were purified by selective adsorp-
tion/desorption on glass beads (Gene Clean, Bio101, La Jolla, CA, USA).
Sequence analysis was carried out employing the DNA Strider program (ver-
sion 1.2 for Macintosh).

DNA alignment and phylogenetic analyses. Multiple sequence
alignment of GAPDHN protein regions corresponding to the PCR-amplified
DNA fragments of the bacteria studied were done with the Clustal X v.1.8
program [32]. Using this alignment, phylogenetic trees were constructed
employing the distance (neighbor-joining, Kimura distance calculations),
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maximum likelihood, and maximum parsimony methods and using the pro-
grams Clustal X v.1.8, Tree-Puzzle v.5.0 [31] and Protpars v.3.573c
(PHYLIP package v.3.5c w1993x Felsenstein, J., Dept. of Genetics, Univ. of
Washington, Seattle, USA), respectively. Bootstrap analyses (values present-
ed on a percentage basis) were computed with 1000 replicates for the dis-
tance and maximum parsimony trees; for maximum likelihood analysis, esti-
mations of support were assigned to each internal branch using the quarter
puzzling algorithm [31]. Published amino acid sequences of GAPDHNs
used in this work come from bacteria (Bacillus anthracis, accession number
AAP24851; Bacillus halodurans, E83929; Streptococcus mutans,
NP721104; Streptococcus pneumoniae TIGR4, NP345590; Streptococcus
pneumoniae R6, NP358622; Mycoplasma capricolum, CAA 83756;
Ureaplasma urealyticum, AAF30771), higher plants (Pisum sativum,
P81406; Nicotiana plumbaginifolia, P93338; Zea mays, Q43272), and a
microalga (Scenedesmus vacuolatus, CAC81014). Ferredoxin-dependent
GAPDHN sequences of archaea (Pyrococcus furiosus, NP578193 and
Methanococcus jannaschii, NP248149) were also used. Bacterial GAPDH
encoded by the Escherichia coli gap1 gene (accession number P06977) was
used as out-group. PCR-amplified partial gapN sequences from bacteria
were submitted to EMBL/GeneBank databases and assigned accession num-
bers as follows: AJ880320 (Clostridium acetobutylicum ATCC859),
AJ880322 (C. pasteurianum), AJ880325 (C. difficile), AJ880321 (C. per-

fringens), AJ880323 (C. sporogenes), AJ8800317 (Bacillus sp.), AJ880318
(B. cereus), AJ880319 (B. licheniformis), AJ880324 (B. thuringiensis),
AJ880316 (Streptococcus sp.), AJ880315 (S. agalactiae), and AJ880326 (S.
pyogenes).

Results and Discussion

GAPDHN activity and immunoblot analyses.
Table 1 shows the enzymatic activities (U/mg) of phosphory-
lating NAD+-dependent and non-phosphorylating NADP+-
dependent glyceraldehyde-3-phosphate dehydrogenase
(GAPDH and GAPDHN) in the strains studied. Phospho-
rylating NAD+-dependent GAPDH was present universally
and showed high specific activity values, in the range of
0.2–2.5 U/mg, in all bacterial strains examined. By contrast,
GAPDHN activity (specific activity 0.01–0.1 U/mg) was
found only in a number of gram-positive strains of the gen-

NON-PHOSPHORYLATING GAPDHN

Table 1. Phosphorylating NAD+-dependent (GAPDH) and non-phosphorylating NADP+-dependent
glyceraldehyde-3-phophate dehydrogenase (GAPDHN) activities in different bacterial strains

Bacteria GAPDH activity (U/mg) GAPDHN activity (U/mg)

Clostridium acetobutylicum ATCC824 1.010 0.013

Clostridium perfringens 0.192 0.011

Clostridium pasteurianum 0.190 0.060

Clostridium difficile 0.265 0.040

Clostridium sporogenes 2.300 0.037

Streptococcus pyogenes 2.510 0.017

Streptococcus agalactiae 0.282 0.090

Streptococcus sp. 0.400 0.102

Bacillus licheniformis 0.188 0.099

Bacillus cereus 0.200 0.040

Bacillus thuringiensis 0.312 0.010

Bacillus sp. 1.000 0.038

Staphylococcus aureus 1.229 nd*

Bacillus megaterium 1.420 nd

Bacillus subtilis 1.030 nd

Bacteroides fragilis 0.500 nd

Neisseria meningitidis 0.750 nd

Enterococcus faecium 1.006 nd

Enterococcus hirae 2.240 nd

Lactobacillus brevis 0.543 nd

Lactobacillus paracasei 0.465 nd

Lactobacillus plantarum 0.733 nd

Lactococcus lactis 0.312 nd

Mycobacterium tuberculosis 0.900 nd

Pseudomonas aeruginosa 1.000 nd

*nd, not detected.
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era Clostridium, Streptococcus, and Bacillus. Surprisingly, de-
spite some cases of close evolutionary linkage to those bacteria,
activity was absent from B. megaterium, B. subtilis, E. faecium,
E. hirae, S. aureus, L. brevis, L. paracasei, L. plantarum, L.
lactis, M. tuberculosis, and the gram-negative bacteria N.
meningitidis, Ba. fragilis, and P. aeruginosa.

Figure 1 shows the immunoblot containing single-protein
bands of ca. 48–54 kDa, corresponding to the GAPDHN sub-
units, in soluble protein extracts from the species mentioned
above that have non-phosphorylating dehydrogenase activity
Similar bands were detected by immunoblots and using the
same antibodies in cell extracts from other bacteria, includ-
ing Clostridium pasteurianum and C. sporogenes (data not
shown). The observed cross-reaction suggests common epi-
topes between the C. acetobutylicum protein and the other
bacterial GAPDHNs. As expected, no bands were immuno-
detected in cell extracts of those bacteria in which activity
had not been recorded. 

PCR and sequence analysis of bacterial gapN
genes. The bands resulting from separating the PCR prod-
ucts on agarose gel are shown in Fig. 2. After amplification
of the ca. 0.7-kb single DNA fragments, these bands were
excised from the gel, sequenced, and their deduced amino
acid composition analyzed. All of the amino acid sequences
showed good identity with that from the gapN fragment of S.
mutans. In agreement with biochemical and immunochemi-
cal data, no band was amplified in the cases of B. megate-
rium, B. subtilis, Ba. fragilis, S. aureus, N. meningitidis, E.
faecium, E. hirae, L. brevis, L. paracasei, L. plantarum, L.
lactis, M. tuberculosis, and P. aeruginosa.

Figure 3 shows the alignment between the approximately
240 amino acids corresponding to the amplified 700-bp frag-
ments and the deduced amino acid sequences of the corre-
sponding GapN fragments from higher plants (P. sativum, N.

plumbaginifolia, Z. mays) and algae (S. vacuolatus). The lat-
ter were also compared with other deduced amino acid
sequences of bacterial GAPDHNs in databases (B. anthracis,
B. halodurans, S. mutans, M. capricolum, U. urealyticum).

As expected, the non-phosphorylating GAPDHN showed
no significant identity match with phosphorylating GAPDHs.
Both non-phosphorylating GAPDH and phosphorylating
GAPDHs showed high specificity towards D-glyceraldehyde-
3-phosphate [13,18], which suggested that substrate speci-
ficity of the two GAPDH forms emerged by convergent evo-
lution along independent lines [10]. Sequences of the
archaeal ferredoxin-dependent GAPDHN, which requires a
heavy-metal cofactor and is oxygen sensitive, were distinct-
ly different from that of any other NADP+-dependent
GAPDHN (not shown).

The 12 deduced partial bacterial GAPDHN sequences
determined in this study were compared using the CLUSTAL
X (v. 1.8) program with other published amino acid sequen-
ces of eukaryotic and prokaryotic origin. The results showed
significant similarities between the various prokaryote and
eukaryote sources (Fig. 3). In addition to the conserved hep-
tapeptide Ser-Gly-Glu-Arg-Cys-Thr-Ala (residues 294–300,
following pea GAPDHN numbering [10], including residues
Arg-297, necessary for phosphate group binding of the sub-
strate, and Cys-298, involved in catalytic thioester forma-
tion), other residues involved in enzyme activity are strictly
conserved in all GAPDHN proteins. These are the 191–192
dipeptides Lys-Pro, and the hexapeptide Glu-Leu-Gly-Gly-
Lys-Asp at position 264–269. The latter includes the active
site Glu-264, involved in deacylation through activation and
orientation of the attacking water molecule [22,23,24] (Fig.
3). Thus, the basic structural features of the members of the
GAPDHN family have been conserved over evolution. The
highly conserved Gly-249 and Gly-295 are also present in the
aldehyde dehydrogenase superfamily [10], showing that
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Fig. 1. Immunodetection of non-phosphorylating glyceraldehyde 3-phos-
phate dehydrogenase (GAPDHN) in crude extracts of various bacteria.
Lane 1 Clostridium acetobutylicum ATCC 824, lane 2 C. difficile, lane 3
Streptococcus agalactiae, lane 4 Streptococcus sp., lane 5 C. sporogenes,
lane 6 S. pyogenes, lane 7 C. perfringens, lane 8 Bacillus cereus, lane 9 B.
thuringiensis, lane 10 B. licheniformis. Approximately 50 µg of crude
extracts were loaded per lane. Apparent molecular masses are indicated on
the left.
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Fig. 2. PCR amplification of the 700-bp fragment from the gapN gene,
employing chromosomal DNA of diverse bacteria. Lane 1 Clostridium ace-
tobutylicum ATCC859, lane 2 C. pasteurianum, lane 3 C. difficile, lane 4 C.
perfringens, lane 5 C. sporogenes, lane 6 B. thuringiensis, lane 7 Neisseria
meningitidis, lane 8 Lactobacillus brevis, lane 9 B. cereus, lane 10 Strep-
tococcus pyogenes, lane 11 Streptococcus sp. Bands were visualized on
0.8% (w/v) agarose gels in the presence of ethidium bromide. HindIII-
restricted lambda DNA was used as the molecular size marker (M). The
arrow indicates the amplified gapN fragments.
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Fig. 3. Multiple sequence
alignment using the
CLUSTAL X v.1.8 pro-
gram of the partial
GAPDHN sequences from
photosynthetic eukaryotes
and bacteria. Sequences
obtained in this work as
well as published amino
acid sequences of bacterial
and plant sources, as des-
cribed in Materials and
methods, were included.
The conserved motives
including the catalytic im-
portant residues Glu 264
and Cys 298 (showed in
bold) are underlined. The
degenerate primers used in
PCR experiments are indi-
cated by arrows.
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GAPDHNs and ALDHs probably shared a common ancestor.
Nevertheless, the number of residues in which ALDHs differ
from GAPDHN in the aligned sequences provides evidence
that they actually belong to different enzyme families.

Phylogenetic analysis of GAPDHN sequences.
The phylogenetic tree constructed using the above-described
multiple sequence alignment and the distance (neighbor-join-
ing) method [28] is shown in Fig. 4. Maximum likelihood
and parsimony methods were also used, giving results (not
shown) very similar to those in Fig. 4. E. coli GAPDH1 pro-
tein was used as out-group. The trees showed an analogous

phylogenetic relationship among the GAPDHNs of the
eukaryotic and prokaryotic groups. These groups are differ-
ent from the archaeal ferredoxin-dependent GAPDHN,
which probably diverged out first, before eukaryotic and bac-
terial GAPDHN separation. However, note that these results
depict only the molecular phylogeny of the GAPDHN pro-
tein and do not necessarily represent phylogenetic relation-
ships between species. A paraphyletic relationship is
observed between bacterial GAPDHN sequences that appear
in three clusters (Streptococcaceae, Clostridia, and
Bacillaceae) together with the plant group, and a separate,
early-branching group of mycoplasm sequences (Urea-
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Fig. 4. Distance phylogenetic tree of the
bacterial GAPDHN sequences deduced
from the gapN fragments, as described in
Materials and methods. Sequences of
Clostridium acetobutylicum ATCC 859,
C. perfringens, C. pasteurianum, C. diffi-
cile, C. sporogenes, Streptococcus pyo-
genes, S. agalactiae, Streptococcus sp.,
Bacillus licheniformis, B. cereus, Bacillus
sp., were obtained in this work (in bold).
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plasma urealyticum and Mycoplasma capricolum). This sug-
gests that GAPDHNs of Mycoplasmataceae separated early
in evolution. Indeed, mycoplasms include some of the small-
est prokaryotic genomes (600 kb, about 500 genes), and the
sequences of many genes are very divergent when compared
to homologous sequences of other bacteria [9]. These phylo-
genetic relationships may be due to horizontal gene transfers
and enzyme functional substitutions, such as those described
for some GAPDHs [6,8,12].

In this work, we demonstrated that the gapN gene is pres-
ent in various gram-positive bacteria with a characteristic
low G + C content, including Bacillaceae, Streptococcaceae,
and Clostridiaceae. A possible explanation for this distribu-
tion among some gram-positive bacteria and for the absolute
absence of gapN in gram-negative bacteria could be an early
divergence in basic metabolic enzymes. Nevertheless, a
wider survey of this protein among other microorganisms
would provide better knowledge of its distribution and, espe-
cially, its relation with GAPDHs. 
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Amplia distribución de la gliceraldehído-3-
fosfato deshidrogenasa no-fosforilante entre
las bacterias gram-positivas

Resumen. La gliceraldehído-3-fosfato deshidrogenasa no-fosforilante
(GAPDHN, NADP+-específica, EC 1.2.1.9) está presente en organismos
eucariotas fotosintéticos y en algunas cepas de Streptococcus y Clostridium.
En este trabajo se presentan los resultados de los análisis de actividad e
inmunotransferencia, que se utilizaron para la primera prospección de la dis-
tribución de GAPDHN bacteriana en diversas cepas de Bacillus, Strep-
tococcus y Clostridium. Se han identificado genes putativos gapN mediante
amplificación por PCR de secuencias parciales de 700 bp utilizando ceba-
dores degenerados construidos a partir de regiones proteínicas muy conser-
vadas. Las secuencias de aminoácidos de estos fragmentos se alinearon con
las de otras secuencias conocidas de GAPDHN eucarióticas y procarióticas,
lo que demuestra la presencia de residuos conservados que participan en la
actividad catalítica y que no se han conservado en las aldehído deshidroge-
nasas, una familia de proteínas estrechamente relacionadas con las
GAPDHN. Los resultados confirman que las características estructurales
básicas de los miembros de la familia GAPDHN se han conservado durante
la evolución y que no existe identidad con las GAPDH fosforilantes.
Además, los árboles filogenéticos generados a partir de alineaciones de
secuencia múltiples sugieren una estrecha relación entre las familias
GAPDHN en plantas y bacterias. [Int Microbiol 2005; 8(4):251-258]
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Ampla distribuição da gliceraldeído-3-fosfato
desidrogenase não fosforiladora entre as
bactérias gram-positivas

Resumo. Indicou-se a presença da gliceraldeído-3-fosfato desidrogenase
não fosforiladora (GAPDHN, NADP+-específica, EC 1.2.1.9) em organis-
mos eucariotas fotossintéticos e em algumas cepas de Streptococcus e Clos-
tridium. Neste trabalho apresenta-se os resultados da atividade en imuno-
transferência, usados para a primeira prospecção da distribuição da GAPDHN
bacteriana em diversas cepas de Bacillus, Streptococcus e Clostridium. Se
identificaram genes putativos gapN mediante amplificação por PCR de
seqüências parciais de 700 bp utilizando iniciadores degenerados construí-
dos a partir de regiões proteicas altamente conservadas. As seqüências de
aminoácidos destes fragmentos se alinharam com as de outras seqüências
desconhecidas de GAPDHNs eucarióticas e procarióticas, o que demonstra
a presença de resíduos conservados que participam da atividade catalítica
que não estão conservados nas aldeído desidrogenases, uma família de pro-
teínas estreitamente relacionados com as GAPDHN. Este trabalho confirma
que as características estruturais básicas dos membros da família GAPDHN
se conservaram durante a evolução e que não existe identidade com as
GAPDH fosforilantes. Além disso, as árvores filogenéticas geradas a partir
de alinhamentos de seqüência múltiplas indicam uma estreita relação entre
as famílias de GAPDHN de plantas e bactérias. [Int Microbiol 2005;
8(4):251-258]
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