Comparative effect of the fungicide Prochloraz-Mn on Agaricus bisporus vegetative-mycelium and fruit-body cell walls Authors Dolores Bernardo Biological Research Center, CSIC, Madrid, Spain Amelia Pérez Cabo Biological Research Center, CSIC, Madrid, Spain Monique Novaes-Ledieu Biological Research Center, CSIC, Madrid, Spain José Pardo Center for Research, Experimentation and Services of Mushrooms, Quintanar del Rey, Cuenca, Spain Concepción García Mendoza Biological Research Center, CSIC, Madrid, Spain Keywords: Agaricus bisporus, Prochloraz-Mn, vegetative-mycelial cell walls, fruit-body cell walls, carbohydrate rearrangement Abstract Fungicides to control mycopathogens of commercial Agaricus bisporus, a mushroom cultivated for human consumption, are a major field of study, since these chemicals are toxic to both the host and its fungal parasites. The fungicide Prochloraz-Mn, used at its LD50 for A. bisporus, partially inhibited protein biosynthesis in the vegetative mycelial cell walls of this mushroom and caused significant changes in cell-wall polysaccharide structure, as deduced by methylation analysis and gas liquid chromatography-mass spectrometry (GLC-MS). Furthermore, the aggregated mycelial walls showed distinct alterations in their overall chemical composition following the administration of Prochloraz-Mn at the LD50 and the LD50 ×1000. As expected, GLC-MS studies indicated that the latter dose caused more appreciable differences in polysaccharide structure. The decrease in mushroom crop yields obtained from industrial cultures treated with Prochloraz-Mn to control V. fungicola infection depended on the dose of the fungicide employed, whereas fruit-body morphology was only slightly affected at the highest Prochloraz-Mn concentration used. [Int Microbiol 2004; 7(4):277-281] Downloads PDF Published 2010-02-27 Issue Vol. 7 No. 4 (2004) Section Research Articles License Submission of a manuscript to International Microbiology implies: that the work described has not been published before, including publication in the World Wide Web (except in the form of an Abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that all the coauthors have agreed to its publication. The corresponding author signs for and accepts responsability for releasing this material and will act on behalf of any and all coauthors regarding the editorial review and publication process.If an article is accepted for publication in International Microbiology, the authors (or other copyright holder) must transfer to the journal the right–not exclusive–to reproduce and distribute the article including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature. Nevertheless, all article in International Microbiology will be available on the Internet to any reader at no cost. The journal allows users to freely download, copy, print, distribute, search, and link to the full text of any article, provided the authorship and source of the published article is cited. The copyright owner's consent does not include copying for new works, or resale. In these cases, the specific written permission of International Microbiology must first be obtained.Authors are requested to create a link to the published article on the journal's website. The link must be accompanied by the following text: "The original publication is available on LINK at <http://www.im.microbios.org>. Please use the appropiate URL for the article in LINK. Articles disseminated via LINK are indexed, abstracted, and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.