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Abstract Fungi are used in many industrial processes,
such as the production of enzymes, vitamins, polysac-
charides, polyhydric alcohols, pigments, lipids, and
glycolipids. Some of these products are produced com-
mercially while others are potentially valuable in bio-
technology. Fungal secondary metabolites are extremely
important to our health and nutrition and have tre-
mendous economic impact. In addition to the multiple
reaction sequences of fermentations, fungi are extremely
useful in carrying out biotransformation processes.
These are becoming essential to the fine-chemical
industry in the production of single-isomer intermedi-
ates. Recombinant DNA technology, which includes
yeasts and other fungi as hosts, has markedly increased
markets for microbial enzymes. Molecular manipula-
tions have been added to mutational techniques as a
means of increasing titers and yields of microbial pro-
cesses and in the discovery of new drugs. Today, fungal
biology is a major participant in global industry.
Moreover, the best is yet to come as genomes of addi-
tional species are sequenced at some level (cDNA,
complete genomes, expressed sequence tags) and gene
and protein arrays become available.
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Fungi as cell factories

Since prebiblical times, fungi, including both true fila-
mentous fungi and yeasts, have been used to produce
products such as beer, wine, bread, and cheese. The
twentieth century, a golden age of industrial microbiol-
ogy, yielded a myriad of products made by fermentation
processes: solvents, antibiotics, enzymes, vitamins, ami-
no acids, polymers, and many other useful compounds
[30]. The development of molecular biology techniques
provided new ways to use yeasts and molds as microbial
cell factories for the production of homologous and
heterologous (especially mammalian) proteins as well as
other metabolites, such as antibiotics, pigments, and
fatty acids. The choice of the strain is made on the basis
of production yields and regulatory issues, especially for
fungi used in the food industry. Host strains are usually
chosen from among those which have attained the so-
called GRAS (Generally Recognized As Safe) status by
the U.S. Food and Drug Administration (FDA). Several
species of fungi have that status and are currently being
used for large-scale production of recombinant proteins
and metabolites [84].

Production of recombinant polypeptides

Pharmaceutical proteins

Since it is a food organism, Saccharomyces cerevisiae is
considered to be a safe host for the production of
pharmaceutical proteins. This yeast can be grown rap-
idly and to a high cell density, can secrete heterologous
proteins into the extracellular broth, and knowledge of
its genetics is more advanced than that of any other
eukaryote [86]. Mammalian genes have been cloned and
expressed in S. cerevisiae, including human interferon
[52], human epidermal growth factor [14], and human
hemoglobin [100]. The most commercially important
yeast recombinant process has been the production of
genes encoding surface antigens of the hepatitis B virus,
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resulting in the first safe hepatitis B vaccine [75, 104].
Despite these successful examples, S. cerevisiae is
sometimes regarded as a less than optimal host for large-
scale production of mammalian proteins because of
certain drawbacks, such as hyperglycosylation, the
presence of a-1,3-linked mannose residues that may
cause antigenic responses in patients, and the absence of
strong and tightly regulated promoters.

For these reasons, Pichia pastoris has become one of
the most extensively used expression systems [51, 86, 87].
Among the advantages of this methylotrophic yeast over
S. cerevisiae are: (1) an efficient and tightly regulated
methanol promoter (AOX1) which yields alcohol oxi-
dase at 30% of soluble protein, (2) less extensive gly-
cosylation, due to shorter chain lengths of N-linked
high-mannose oligosaccharides, usually up to 20 resi-
dues lacking the terminal a-1,3-mannose linkages [15,
27, 85], (3) integration of multiple copies of foreign
DNA into chromosomal DNA yielding stable transfor-
mants [42, 86], (4) the ability to secrete high levels of
foreign proteins, (5) high-density growth and straight-
forward scale-up [85, 87]. There are many examples of
intracellular or extracellular recombinant products that
have been made in P. pastoris [16, 26, 51, 85, 86].
Nonetheless, one of the main drawbacks to this excellent
expression system is its non-GRAS status, although
some products made by this yeast are being evaluated in
phase III clinical trials. For example, the production of
recombinant hirudin, a thrombin inhibitor from the
medicinal leech Hirudo medicinalis, results in yields of
1.5 g secreted product/l [96].

Heterologous gene expression in the methylotrophic
yeast Hansenula polymorpha is similar to that
of P. pastoris. The promoter of the methanol oxidase
gene is used to express foreign genes. As with AOX1 in
P. pastoris, MOX in H. polymorpha is also highly
expressed and tightly regulated, giving enzyme levels up
to 37% of total cell protein [43]. One major difference is
that expression of MOX is significantly derepressed in
the absence of glucose or during glucose limitation [34]
and therefore tight regulation of the MOX promoter is
lost under the high-glucose conditions usually used for
high-biomass fermentations [41].

The development of molecular techniques for the
production of recombinant heterologous proteins in fil-
amentous fungi is laborious and has contrasted mark-
edly with the success achieved in yeasts. Some advances
in transformation have been recently reported, e.g.,
restriction enzyme-mediated integration [95] and Agro-
bacterium tumefaciens Ti-plasmid-mediated transforma-
tion [46]. Levels of production of non-fungal proteins
are lower than those of homologous proteins. This is due
to factors that influence production, i.e., transcription,
translation, secretion, and extracellular degradation [4,
47, 84, 108]. Different strategies have been developed to
overcome these problems, including the construction of
protease-deficient strains [73, 105], the introduction of a
large number of gene copies [5, 46], the use of strong
fungal promoters, efficient secretion signals [47, 76, 108],

and fusions with a gene that encodes part of or an entire
well-secreted protein [47, 84]. Gene fusion is the first
choice in attempting to produce non-fungal proteins in
fungal hosts. Fusion has resulted in levels of secreted
proteins of 5 mg human interleukin-6/l [17, 23], 2 mg
human lysozyme/l [8] and 250 mg human lactoferrin/l
[114]. Higher concentrations have been obtained for
some of these proteins after mutagenic treatment of
high-producing strains, e.g., human lactoferrin at 5 g/l
[113].

Recent studies have shown the fungal secretory
pathway to be a limiting factor in heterologous enzyme
production. Studies on screening for mutant strains
with altered secretion properties using green fluorescent
protein as reporter [45], elucidation of the role of
secretion-related chaperones and foldases [22, 61, 90,
112], kinetic studies on protein secretion [78], and the
effects of hyphal branch frequency [11] are examples of
the work being carried out to understand this complex
process.

For many proteins that have pharmaceutical appli-
cations, N-glycosylation is necessary for stability,
proper folding, e.g., erythropoietin and human chori-
onic gonadotropin (hGC), and pharmacokinetics [57].
Although O-linked glycosylation in yeast is quite dif-
ferent from that in higher eukaryotes, N-linked glyco-
sylation is more conserved [86]. In yeast recombinant
proteins, as well as in mammalian polypeptides, a core
oligosaccharide unit (GlcNAc2Man9Glc3) is present at
the endoplasmic reticulum [68]. The three glucose res-
idues and one mannose are removed and processing of
the core oligosaccharide continues in the Golgi, where
there is divergence between yeasts and higher
eukaryotes. Recombinant yeast proteins usually show
high-mannose side chains (GlcNAc2Man2–6) where
elongation may take place in further addition steps.
Mammalian proteins show two different types of
oligosaccharide side chains: low-mannose residues
(GlcNAc2Man3) plus additional residues of galactose,
fucose, and sialic acid or a mixture of high-mannose
and complex type oligosaccharides [64]. Little research
has been carried out on glycosylation in molds al-
though hyperglycosylation does not seem to occur and
low-mannose side chains are formed [35, 72, 91]. The
glycosylation of a protein can be different depending
on factors such as the medium in which the cells are
grown.

Commercial recombinant enzymes

Recombinant fungi are one of the main sources of en-
zymes for industrial applications. The industrial enzyme
market reached $1.6 billion in 1998 [99] for the following
application areas: food, 45%; detergents, 34%; textiles,
11%; leather, 3%; pulp and paper 1.2%. This does not
include diagnostic and therapeutic enzymes. The market
for these non-pharmaceutical proteins reached $2 billion
in 2000. Over 60% of the enzymes used in the detergent,
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food, and starch processing industries are recombinant
products [24]. Although the number of heterologous
fungal enzymes approved for food applications is not
very large, the list is continuously increasing [http://
www.enzymetechnicalassoc.org]. Due to the low yields
achieved with non-fungal proteins (see above), many
recombinant food-grade proteins are of fungal origin [4,
80]. There is one exception in which the donor strain is
not another fungus, i.e., calf rennin (chymosin), which is
used for cheese making. Production of this bovine pro-
tein in recombinant Aspergillus niger var awamori
amounted to about 1 g/l after nitrosoguanidine muta-
genesis and selection for 2-deoxyglucose resistance [33].
Further improvement was done by parasexual
recombination, resulting in a strain producing 1.5 g/l
from parents producing 1.2 g/l [12]. A recombinant
strain of Aspergillus oryzae producing an aspartic pro-
teinase from Rhizomucor miehei has been approved by
FDA for cheese production [http://vm.cfsan.fda.gov, 80]
(Fig. 1).

Microbial lipases have a huge potential in areas such
as food technology, biomedical sciences, and chemical
industries since they are: (1) stable in organic solvents,
(2) possess broad substrate specificity, (3) do not require
cofactors, and (4) exhibit high enantioselectivity [55, 56,
93]. In the food industry, lipases are commonly used in
the production of fruit juices, baked foods, desirable
flavors in cheeses, and interesterification of fats and oils
to produce modified acylglycerols. There are three fun-
gal recombinant lipases currently used in the food
industry, Rhizomucor miehi, Thermomyces lanuginosus
and Fusarium oxysporum, all of which are produced in
A. oryzae [http://vm.cfsan.fda.gov, 80].

Lipases are extremely important in the detergent
industry. They are extensively used in household deter-
gents, industrial cleaners, and leather processing, where
they can be combined with proteases, oxidases, and
peroxidases [79]. To be suitable, lipases should be al-
kalophilic, able to work at temperatures above 45 �C
and at pH values of about 10, and capable of func-
tioning in the presence of the various components of
wash-product formulations, such as oxidants and surf-
actants. In 1994, Novo Nordisk introduced Lipolase, the
first commercial recombinant lipase for use in a deter-
gent, by cloning theHumicola lanuginose lipase gene into
the A. oryzae genome [20, 79].

Fungal secondary metabolites

Antibiotics

Of the 12,000 antibiotics known in 1995, about 22%
could be produced by filamentous fungi [10, 100]. These
include the natural penicillin G and the biosynthetic
penicillin V, with a combined market of $4.4 billion,
many semisynthetic penicillins, and the semisynthetic
cephalosporins, which have a market of $11 billion.

Immunosuppresive agents

Cyclosporin A was originally discovered as a narrow-
spectrum antifungal peptide produced by the mold
Tolypocladium nivenum (previously Tolypocladium in-
flatum)[13]. Discovery of the drug’s immunosuppressive
activity led to its use in heart, liver, and kidney trans-
plants and thus to the overwhelming success of the or-
gan-transplant field. A very old broad-spectrum fungal
antibiotic produced by several species of Penicillium,
mycophenolic acid, was never commercialized as an
antibiotic, but its 2-morpholinoethylester was approved
as a new immunosuppressant for kidney transplantation
in 1995 and for heart transplants in 1998. The ester is
called mycophenolate mofetil (CellCept) and is a pro-
drug that is hydrolyzed to mycophenolic acid in the
body.

Hypocholesterolemic agents

Fungal statins (lovastatin, pravastatin and others [37]),
which act as inhibitors of 3-hydroxy-3-methylglutaryl-
coenzyme A reductase, the regulatory and rate-limiting
enzyme of cholesterol biosynthesis in liver, have a mar-
ket of $15 billion. The first member of this group,
compactin, was an antibiotic product of Penicillium
brevicompactum [18] and Penicillium citrinum [38]. Later
on, Endo and Alberts et al. [2, 36] independently dis-
covered the more active methylated form of compactin,
lovastatin, in broths of Monascus ruber and Aspergillus
terreus, respectively. Lovastatin was approved by the
FDA in 1987.

Fig. 1A, B Fungal strains from
the Puleva Biotech culture
collection. (A) Aspergillus niger,
Aspergillus oryzae and
Monascus prupurea. (B)
Penicillium sp.
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Antitumor agents

Taxol, a natural anticancer agent, was originally dis-
covered in plants [111] but can also be produced by the
fungus Taxomyces andreanae [95]. It is approved for the
treatment of breast and ovarian cancer and is the only
commercial antitumor drug known to act by blocking
depolymerization of microtubules. In 2000, taxol sales
amounted to over $1 billion for Bristol Myers-Squibb,
representing 10% of the company’s pharmaceutical sales
and its third largest selling product [102].

Mycotoxins

Ergot alkaloids produced by different species ofClaviceps
are used for the treatment of many pathologies such as
migraine headache, cerebral circulatory disorder, uterine
contraction, bleeding after childbirth, and also for pre-
vention of implantation in early pregnancy [9, 109].
Among their physiological activities are the inhibition of
the action of adrenalin, noradrenalin, and serotonin
and the contractionof smoothmuscles of theuterus. Some
of the ergot alkaloids also possess antibiotic activity.

Zearelanone, produced by Gibberella zeae (syn.
Fusarium graminearum) [50], is an estrogen and its
reduced derivative zeranol is used as an anabolic agent
in cattle and sheep, increasing both growth and feed
efficiency. Gibberellic acid, a member of the phytotoxic
mycotoxin group known as the gibberellins, is produced
by Gibberella fujikuroi . Gibberellins are used to speed
up barley malting, improve malt quality, increase the
yield of vegetables, and cut in half the time required to
obtain lettuce and sugar beet seed crops. They are iso-
prenoid growth regulators controlling flowering, seed
germination, and stem elongation [103].

Pigments

Fermentation of Monascus purpureus on rice to prepare
koji or ang-kak (red rice) has been used as a traditional
Chinese food and medicine since 800 A.D. [71]. The
water-soluble red pigments monascorubramine and ru-
bropunctamine are produced by reaction of the orange
pigments monascorubrin and rubropunctatin with ami-
no acids present in the fermentation media [60]. The
fungus is used for preparing red rice, wine, soy bean
cheese, meat, and fish and is authorized for food use in
China and Japan.

The yeast Phaffia rhodozyma has become the most
important microbial source for the production of the
carotenoid astaxanthin [3]. This pigment is responsible
for the orange to pink color of salmonid flesh and the
reddish color of boiled crustacean shells. Feeding of pen-
reared salmonids with a diet containing this yeast in-
duces pigmentation of the white muscle [58, 59].

Blakeslea trispora has been used for the industrial
production of b-carotene in Russia for years. In this

fermentation, a fungal mated culture is used with a pre-
ferred ratio of minus and plus mating strains [28]. The
accumulation of b-carotene is strongly linked to sexual
interactionbetween the twomating types.Ahormone-like
substance produced during mating, the major component
of which is trisporic acid, stimulates pigment production.

Polyunsaturated fatty acids

Morteriella isabellina and Mucor circinelloides can accu-
mulate up to 5 g c-linoleic acid/l in a medium based on
molasses or glucose [28]. Morteriella alpina is the best
choice for the production of arachidonic acid. Within the
last 4 years, the cloning of all desaturases required for the
synthesis of this polyunsaturated fatty acid (PUFA) has
been described [88, 89], although a D17 desaturase for
synthesis of longer PUFAs and a fatty acid elongase re-
main elusive. This fungus is also able to accumulate ei-
cosapentanoic acid when cultured at low temperature.

Regulation of fungal secondary metabolism

Most secondary metabolites are formed via enzymatic
pathways rather than by a ribosomal mechanism. The
enzymes occur as individual proteins, free or complexed,
or as parts of modules of large multifunctional poly-
peptides carrying out a multitude of enzymatic steps,
e.g., in the cases of polyketide synthases and peptide
synthetases. Whether chromosomal or plasmid-borne,
the secondary metabolism genes are often clustered, but
not necessarily as single operons. Clusters of fungal
biosynthetic genes have been found encoding enzymes
for the production of penicillins, cephalosporins [1], and
sterigmatocystin [19] by Aspergillus nidulans, and tri-
chothecenes [53] by Fusarium sporotrichiodes.

Regulation by carbon source

Glucose, usually an excellent carbon source for growth,
often interferes with the formation of secondary
metabolites. Instead, polysaccharides (e.g., starch), oli-
gosaccharides (e.g., lactose) and oils (e.g., soybean oil,
methyloleate) are often preferable for fermentations
yielding secondary metabolites [29]. In media containing
a mixture of a rapidly used and a slowly used carbon
source, the former is utilized first to produce cells but
little to no secondary metabolites are formed. After the
rapidly assimilated compound is depleted, the ‘‘second-
best’’ carbon source is used for the production phase,
known as the ‘‘idiophase.’’

Regulation by nitrogen source

Nitrogen regulation affects both primary and secondary
metabolism [29]. The control of enzyme synthesis is
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generally exerted by the intracellular nitrogen pool.
Many secondary metabolic pathways are negatively af-
fected by nitrogen sources favorable for growth, e.g.,
ammonium salts. As a result, a slowly assimilated amino
acid is often used as the nitrogen source to encourage
high production of secondary metabolites. Information
concerning the mechanism(s) underlying the negative
effect(s) of ammonium and certain amino acids on
industrial processes is scarce.

A more specific type of control takes place when a
particular amino acid (or biosynthetic group of amino
acids) represses and/or inhibits production of a sec-
ondary metabolite because the primary metabolite(s)
and the idiolite are derived from the same branched
pathway, and the amino acid(s) exerts negative feedback
regulation on the biosynthetic pathway before the
branch point. An example is the negative effect of lysine
on penicillin synthesis which is caused by lysine inhib-
iting homocitrate synthase [31], an enzyme involved in
the formation of the penicillin precursor, L-a-amino-
adipic acid.

Regulation by phosphorus source

A rather specific negative effect of inorganic phosphate
arises from its ability to inhibit and/or repress phos-
phatases. Because biosynthetic intermediates of certain
pathways are phosphorylated whereas the ultimate
product is not, phosphatases are sometimes required in
biosynthesis. Although only little is known about the
mechanism of general phosphate control of secondary
metabolism, there is a strong possibility that phosphate
regulation also works by affecting enzyme activities,
such as phosphorylation by protein kinases and
dephosphorylation by phosphoprotein phosphatases
[65]. Phosphate also appears to interfere in many sec-
ondary metabolic pathways not known to have phos-
phorylated intermediates.

Induction of secondary metabolite synthases

In a number of secondary metabolic pathways, primary
metabolites increase production of the final product.
These effectors are often precursors and one has to
determine whether the effect is merely due to an in-
crease in precursor supply and/or includes induction of
one or more synthases of the biosynthetic pathway.
Stimulatory precursors that are also inducers include
tryptophan for dimethylallyltryptophan synthetase in
ergot alkaloid biosynthesis [66], phenylalanine in ben-
zodiazapene alkaloid formation [70], methionine for
d-(L-a-aminoadiphyl)-L-cysteine-L-valine synthetase
(ACVS), cyclase and expandase in the cephalosporin
pathway of Acremonium chrysogenum [107, 116], and
phenylacetate for the phenylacetate uptake system in-
volved in penicillin G formation in Penicillium chrys-
ogenum [40].

Fungal regulatory genes

Clustering of fungal genes is not common except in cases
of assimilation of certain nutrients (e.g. proline, quinate,
ethanol, nitrate) and production of secondary metabo-
lites [63]. Regulation of pathways in fungi (mainly
studied in A. nidulans) can be narrow or broad-domain
regulation [92]. Narrow -domain regulation usually in-
volves a positively acting pathway-specific regulatory
protein containing a zinc binuclear cluster:
CX2CX6CX6CX2CX6CX2. Broad-domain control
employs the positively acting nitrogen regulatory gene,
areA, [67] and/or a negatively acting carbon repressor
gene, creA [32].

Feedback regulation

The role of feedback regulation in controlling secondary
metabolism is well-known. Many secondary metabolites
inhibit or repress their own biosynthesis, usually acting
on one key enzyme of their biosynthetic pathway.

Strain improvement

Production of new fungal metabolites by application of
recombinant DNA technologies is of great interest.
Continued progress in the area of metabolic engineering
has led to overproduction of limiting enzymes of
important biosynthetic pathways, thus increasing pro-
duction of the final products.

Brewing yeasts have been engineered in order to
overcome several problems. Thus, cloning an endoglu-
canase from Trichoderma reesei [81] led to a strain able
to hydrolyze the barley b-glucans, which reduce the fil-
terability of beer and lead to precipitates and haze in the
final product. Similar technology was used to create
starch-utilizing S. cerevisiae strains producing lower
acidity and enhanced flavor. Recombinant A. niger
amyloglucosidase is able to break down unfermentable
dextrins for light-beer production [49]. Brewing yeasts
have been engineered to produce acetolactate decar-
boxylase from Enterobacter aerogenes and Acetobacter
aceti. This enzyme eliminates diacetyl and the require-
ment for the 3- to 5-week flavor maturation period that
normally follows a 1-week fermentation stage [97]. The
resulting beer suffers no loss of quality and flavor.
Lower acidity and enhanced flavor in wine has been
achieved by transformation of wine yeast with the gene
encoding the malolactic conversion enzyme from Lac-
tobacillus delbrueckii. Some studies using DNA chip
technology have already been carried out to understand
and overcome many technical problems facing wine-
makers [82].

Replacement of the native promoter of the
ACVS-encoding gene in A. nidulans increased penicillin
production 30-fold [62]. Expression of cefE from
Streptomyces clavuligerus or cefEF from A. chrysogenum
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in P. chrysogenum led to recombinant strains able to
produce the cephalosporin intermediates adipyl-7-ACA
and adipyl-7-ADCA [25]. Disruption of the gene cefEF
of A. chrysogenum yielded strains accumulating high
titers of penicillin N that was subsequently converted to
deacetoxycephalosporin C (DAOC) after cloning cefE
from S. clavuligerus into the high-producing strains
[106].

Thaumatin, a protein from the plant Thaumatococcus
danielli with an intense sweetness (about 3,000 times
more than sucrose), has been recently approved as a
food-grade ingredient. Successful expression of thaum-
atin was achieved in Penicillium roqueforti and A. niger
var awamori [39] at titers of 2)7 mg/l. Recently, an
impressive improvement in yield (up to 14 mg/l) has
been obtained in A. niger var awamori by use of stronger
promoters and higher gene dosage [76]. Production of
the sweetener xylitol has also been improved by trans-
forming the XYL1 gene of Pichia stipitis encoding a
xylose reductase into S. cerevisiae [48].

Production of lactic acid in S. cerevisiae has been
achieved by cloning and expression of a muscle bovine
lactate dehydrogenase gene, reaching productivities of
11 g/l h [83]. Development of fermentation processes for
the production of b-carotene in the food-grade yeast
Candida utilis, containing the carotenoid biosynthetic
genes from the bacteria Erwinia uredovora and Agro-
bacterium aurantiacum, is in progress [74, 94]. Using a
similar strategy, cloning of two desaturases from Mor-
teriella alpina led to a recombinant yeast strain able to
produce c-linoleic acid [54].

Combining heterologous gene expression of a single
plant enzyme and eight mammalian proteins, as well as
four targeted gene deletions, led to a recombinant S.
cerevisiae strain able to produce hydrocortisone, the
major adrenal glucocorticoid of mammals and an
important intermediate of steroidal drug synthesis [101].

Future prospects

The last few years have been a period of great progress
using fungi as cell factories. There are four major fronts
in which work is currently underway. The first is the
development of alternative hosts, especially those that
have already been given GRAS status by the FDA and
can be used in the food industry. Research is being fo-
cused on species such as Aspergillus sojae, Aspergillus
japonicus, Mortierella alpina and Fusarium veneratum,
among others [84]. The second front is the development
of better molecular techniques to improve expression
and secretion of non-fungal proteins in filamentous
fungi. The third major front involves the use of these
molecular techniques to carry out metabolic engineering
in order to modify and improve particular biosynthetic
pathways. The final front will utilize the techniques
dealing with the overall analysis of gene expression, i.e.,
genomics, proteomics and metabolomics. Four fungal
genomes have already been sequenced, S. cerevisiae [44],

Schizosaccharomyces pombe [115], A. niger [http://
www.dsm.com] and Neurospora crassa [http://www-
genome.wi.mit.edu], and sequencing of four others are
in progress (A. fumigatus, A. nidulans, Candida albicans
and Ustilago maydis) [http://www.tigr.org]. Initial steps
on filamentous fungal genomics [7] and proteomics have
recently been published [21, 69], and undoubtedly much
more will become available in the years ahead.

The future of fungal biotechnology is encouraging
when one considers that all the contributions that have
been made already by fungi have been done with less
than 5% of the fungal species present in nature. Soils
and marine environments contain thousands of un-
known microbial species, many of them fungi. New
methods are being used to harness ‘‘environmental
DNA’’ and to bring about the cultivation of so-called
unculturable microorganisms. About 30–50% of known
proteins have no known function. As more functions are
revealed by functional genomics and bioinformatics,
new targets will become available for screening fungal
products.

Fungal enzymes will be improved in activity, speci-
ficity, and stability by directed evolution [6, 77]. Sec-
ondary metabolite pathways of fungi will be enhanced
by directed evolution of whole cells (‘‘whole genome
shuffling’’) in concert with metabolic engineering. New
secondary metabolites will be created by combinatorial
biosynthesis in fungi.
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