Int Microbiol (2003) 6: 117-120
DOI 10.1007/s10123-003-0117-0

RESEARCH ARTICLE

Alfredo D. Martinez-Espinoza
Claudia G. Leon-Ramirez - Nisha Singh
José Ruiz-Herrera

Use of PCR to detect infection of differentially susceptible maize
cultivars using Ustilago maydis strains of variable virulence

Received: 15 January 2003 / Accepted: 27 February 2003 / Published online: 24 May 2003

© Springer-Verlag and SEM 2003

Abstract Ustilago maydis was specifically detected in
infected maize plants by means of the polymerase chain
reaction (PCR) using oligonucleotides corresponding to
a specific region downstream of the homeodomain of the
bE genes of the pathogen. The reaction gave rise to
amplification of a ca. 500-bp product when tested with
U. maydis DNA, but no amplification was detected with
DNA from fungi not related to U. maydis. Using these
primers, U. maydis was detected in infected maize plants
from differentially susceptible cultivars as early as 4 days
after inoculation with strains of variable degrees of vir-
ulence. Detection of U. maydis at early stages of infec-
tion, or in asymptomatic infected plants should assist in
studies on plant—pathogen interactions.
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Introduction

The basidiomycete Ustilago maydis (DC.) Cda. is the
smut pathogen of maize (Zea mays L.) with worldwide
distribution. During the saprophytic phase, the fungus
is haploid and grows as budding yeasts (sporidia).
Mating of compatible sporidia leads to the formation of
a dikaryotic mycelium, which invades the plant and
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eventually induces formation of tumors full of diploid
teliospores. Teliospores germinate forming a promyce-
lium in which meiosis occurs giving rise to the meiotic
segregants, which multiply by budding and thus com-
plete the life cycle of the fungus [2, 15].

Different events in the life cycle of U. maydis are
regulated by the mating-type loci @ and b. The a locus is
required for cell-to-cell recognition during the mating
process [5] and for the maintenance of filamentous
growth [3]. The a locus has two idiomorphs, @; and a5,
and both have been cloned. Each idiomorph encodes a
pheromone and a receptor for the pheromone synthe-
sized by the compatible partner strain [5]. The b locus
regulates the steps in sexual development that occur after
fusion of haploid cells. The b locus has at least 25 alleles
at each of two genes, bE and hW. Different a and b alleles
in mating partners are necessary to trigger mating, fila-
mentous growth, and tumor induction [10, 16].

The polymerase chain reaction (PCR) has been used to
detect a number of fungal plant pathogens based on the
internal transcribed spacer (ITS) regions of ribosomal
DNA (rDNA) or by sequences specific to the pathogen
[1, 11, 17]. This technique is useful in plant infection
studies when no external or characteristic symptoms of
disease are apparent. For our studies on the course of
experimental infection of maize plantules by virulent and
avirulent strains of U. maydis obtained in the laboratory,
we utilized the PCR method described below to detect
the pathogen in infected symptomatic and asymptomatic
plants. Primers whose sequence corresponds to a con-
served region downstream of the homeodomain of the
bE genes of U. maydis [1, 13] were used to amplify the
corresponding fragment as a diagnostic tool.

Materials and methods

Fungal strains

The following haploid strains of Ustilago maydis were used in this
study: wild-type strains FB1 (a;b;) and FB2 (a,b,) (provided by
Flora Banuett, University of California, San Francisco), BX27
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(a;b;y and BX28 (asbs). Strain BX27 was obtained from FB1 by
illegitimate recombination of a cassette designed to disrupt the
chitin-synthase-coding gene Umichs6 [18], and strain BX28 by ge-
netic recombination between BX27 and FB2 in planta, as described
previously [7]. A mixture of these two strains, affected in an un-
known gene, has low virulence to maize seedlings, producing minor
symptoms such as chlorosis but no or only few small galls (B.
Xoconostle-Cazares, J. Ruiz-Herrera. unpublished data). Strains
were maintained at =70 °C in 50% glycerol. They were recovered in
HCM-liquid medium [12], incubated with shaking (200 rpm) at
28 °C for 2 days and used as inoculum for subsequent experiments.
The maize cultivar BOSR LPC-21 moderately resistant to U. maydis
(J.L. Pons, INIFAP-Celaya, Mexico, personal communication)
was used in some experiments.

Plant inoculation

U. maydis strains were grown in 3 ml of HCM liquid medium for
24 h at 28 °C under continuous shaking (200 rpm). A sample
(1 ml) was transferred to 50 ml of fresh HCM liquid medium and
grown for 18 h under the same conditions. Cells were recovered by
centrifugation at 2,000 g, washed with sterile distilled water by
centrifugation, and resuspended in sterile distilled water to a den-
sity of 1x10® cells per ml. Equal volumes of suspensions of cells of
opposite mating types were mixed. Aliquots (100 pl) of the mixed
suspensions were then inoculated into the stem of 8-day-old maize
cultivar Cacahuazintle seedlings using a small syringe [14]. As
controls, plants were inoculated with the same volume of sterile
distilled water. Plants were maintained in a greenhouse, and
symptoms of the disease were recorded as appearance of chlorosis,
anthocyanins, and the tumors or galls that are characteristic of
U. maydis infections.

Purification of DNA

DNA from U. maydis was extracted using basically the protocol
from Fujimura and Sakuma [9]. DNA samples from the following
organisms were provided by the indicated investigators: Fusarium
moniliforme, A. Glenn (University of Georgia, Athens, Ga., USA);
Trichoderma harzianum, V. Rocha and A. Flores (CINVESTAV-
Irapuato, Irapuato, Gto., Mexico); and Cronartium quercuum f. sp.
fusiforme (the causal agent of fusiform rust of southern pines and
oak trees), Dr. Sara Covert (School of Forest Resources, Univer-
sity of Georgia, Athens, Ga., USA). DNA from whole maize
plants, lower stem, upper stem or leaves was extracted using the
method described by Dellaporta et al. [8]. In all cases, DNA quality
and quantity were evaluated using electrophoresis and spectro-
photometry, respectively.

PCR protocol

PCR amplification was carried out in a volume of 50 pl containing
either fungal or plant DNA, and specific primers. Primers 1369
(5-CTCGAGGTTCATCAGCTCA-3) and 1370 (5-GCTGAGTT-
CTGGAGTCG-3") correspond to sequences located in a conserved
region downstream of the homeodomain of the hE genes from
U. maydis; primer 1369 is located at bp 645 of bEI and hE2, and bp
489 of bES; primer 1370 is located at bp 1147 of bEI and bE2, and
992 of HES [1]. Amplification with these primers should result in a
502-bp product. The reaction mixture also contained 100 mM
dNTPs, 2 mM MgCl,, 1x PCR buffer (Gibco) and 2.5 U of DNA
Taq polymerase. Cycling conditions (30 cycles) were: denaturation
at 95 C, 1 min; annealing at 55 °C, 1 min; and extension at 72 °C,
1 min, followed by a final extension for 10 min at 72 °C. One tenth
of the reaction volume was separated by electrophoresis on a 1.5%
agarose gel, stained with ethidium bromide and observed under
ultraviolet light. Positive controls included DNA from U. maydis
using the two primers. Negative controls included DNA from
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Fig. 1 A PCR amplification of DNA extracted from maize plants
4 days after inoculation with a mixture of sexually compatible wild-
type strains of Ustilago maydis. Lane 1 50 ng U. maydis DNA; lane
250 ng U. maydis DNA using one primer only; lane 3 200 ng DNA
from inoculated maize plants, /ane 4 200 ng DNA from inoculated
maize plants using one primer only, lane 5, 200 ng DNA from
uninoculated maize plants. B PCR amplification of DNA extracted
from maize plants 9 days after inoculation with U. maydis. Lane 1
50 ng U. maydis DNA, lane 2 200 ng DNA from uninoculated
maize plants, lane 3 200 ng DNA from inoculated maize plants. C
PCR amplification of U. maydis DNA. Lanes 1-6 500 250, 100, 50,
20 or 10 ng U. maydis DNA, respectively

uninoculated plants, and DNA from U maydis or infected plants
with U. maydis using each primer separately.

Microscopic observations

Plant tissue was collected from the chlorotic zones as suggested by
Banuett and Herskowitz [4] using a razor blade, and immediately
processed into fine strips. These samples usually had a single layer
of cells at one part of the section. The sections were stained with
cotton blue and observed and photographed in a Leica microscope
equipped with a SPOT camera.

Results

Primers 1369 and 1370 specifically amplified a DNA
product of ca. 500 bp when DNA samples of U. maydis
were used as templates (Fig. 1A, lane 1; Fig. 1B, lane 3;
Fig. 1C). No amplification was observed when PCR
assays were carried out with one primer only (Fig. 1A,
lane 2). Also, no amplification products were detected
when using DNA from other fungi unrelated to
U. maydis, such as the corn pathogen F. moniliforme, the
potato and tomato pathogen P. infestans, the normal
soil inhabitant T. harzianum, or the oak trees pathogenic
basidiomycete C. quercuum f. sp. fusiforme (not shown).



The 500-bp amplification product was clearly seen
when we used 200 ng of DNA extracted from maize
plants as early as 4 days after inoculation with a mixture
of wild-type strains FB1 and FB2 (Fig. 1A, lane 3). The
PCR product was not obtained with a single primer or
DNA from uninoculated plants (Fig. 1A, lanes 4 and 5,
respectively). At this stage of the infection, no signs of
disease were visible in the plants, except chlorotic zones
around the inoculation spot in the leaves. Nevertheless,
microscopic observation showed mycelium colonizing
these zones (Fig. 2A). The same type of mycelium, but
less abundant, was observed in plants inoculated with a
mixture of the low-virulent strains BX27 and BX28
(Fig. 2B).

Results showed that when equal amounts of DNA
isolated from maize tissue at 4 or 9 days of inoculation
were analyzed by PCR, the resulting band was stronger
in the 9-day sample (Fig. 1B, lane 3 vs. Fig. 1A, lane 3).
Figure 1C is included as a demonstration of the sensi-
tivity of the method.

To determine the distribution of the pathogen in the
plant by means of PCR, DNA was extracted from maize
plants 9 days after inoculation with the wild-type
strains. In these experiments we separated: (1) the basal
part of the stem, (2) the upper part of the stem, which
also included the base of the leaves, and (3) the upper
part of the leaves only. All DNA samples were analyzed
by PCR as described. The 500-bp fragment was ampli-
fied from each of the selected parts of the plants (Fig. 3,
lanes 3-5). The 500-bp band was also amplified from
maize plants inoculated with the U. maydis BX27 and
BX28 strains of low virulence (Fig. 3, lanes 7-9) 9 days

Fig. 2 Microscopic
examination of maize tissue
infected with U. maydis.

A Mycelium present in the
chlorotic zones 4 days after
inoculation with a mixture of
compatible wild-type strains.

B Mycelium present in chlorotic
zones 4 days after inoculation
with a mixture of low-virulent
strains. C Mass of mycelium
present in the chlorotic zone

9 days after inoculation with
wild-type strains.

D Morphologically altered and
vacuolated mycelium in
chlorotic zones 9 days after
inoculation of maize plants with
low-virulent strains
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Fig. 3 PCR amplification of DNA extracted from several maize
tissues inoculated with virulent and low-virulent strains of
U. maydis. Lane 1 50 ng U. maydis DNA, lane 2 50 ng U. maydis
DNA using one primer only, /anes 3—6 200 ng DNA from maize
plants inoculated with a mixture of compatible virulent strains, lane
3 DNA from the basal part of the stem, lane 4 DNA from the upper
part of the stem and the first part of new leaves, lane 5 DNA from
the upper part of the leaves, lane 6 DNA from the basal stem using
one primer only. Lanes 7-10 200 ng DNA of maize plants
inoculated with a mixture of compatible low-virulent strains, lane
7 DNA from the basal stem, /lane 8§ DNA from the upper part of the
stem and the basal part of leaves, lane 9 DNA from the upper part
of the leaves, lane 10 DNA from the basal stem using one primer,
lane 11 200 ng DNA from uninoculated maize plant

after inoculation. At this time, no disease symptoms
were observed in plants inoculated with these strains,
but only small chlorotic zones around the hole left by
the inoculation needle. By contrast, plants inoculated
with wild-type strains exhibited gross external symptoms
of the disease at this time, such as yellowing, the pres-
ence of anthocyanins, and the beginning of tumor for-
mation. Microscopic observation of plants inoculated
with the wild-type strains revealed vigorously growing
mycelium in the chlorotic zones (Fig. 2C). However, in
plants inoculated with the mixture of BX27 and BX28
strains, the small chlorotic areas of the leaves showed
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only a few threads of distorted mycelium, which was
vacuolated and had signs of senescence (Fig. 2D).

When the PCR reaction was run using more stringent
conditions, i.e., an annealing temperature of 60 °C, the
amplification product was visible in the lower and in the
upper parts of the stem, but not in the symptom-free
upper part of the leaves (not shown). The same was true
for the low-virulent strains. Additionally, there was no
difference in the detection of U. maydis by PCR using a
susceptible cultivar (Cacahuazintle) and a presumably
moderately resistant cultivar (B95SR LPC-21), although
the symptoms of disease were less apparent in the latter
plants (data not shown). When DNA from plants in-
fected for 4 days with a haploid FB2 strain was ana-
lyzed, a faint band of 500 bp was barely detected in
some experiments, but no amplification was obtained
when DNA samples of further dates were used. The
positive result obtained after 4 days might have been
due to remaining cells of the inoculum.

Discussion

The infection process of U. maydis in maize has been
examined microscopically in the past [4, 6], mostly in
order to analyze the completion of the life cycle in the
plant. As a diagnostic technique, however, the procedure
has low sensitivity and is technically challenging when
asymptomatic plants are analyzed, or in plants inocu-
lated with strains of low virulence. In the past, PCR has
been successfully applied for the detection of plant
pathogens in situ [1, 11, 17]. We have used this method
to analyze infection of differentially susceptible maize
cultivars inoculated with U. maydis strains with different
degrees of virulence. The technique was robust and
reliable for the identification of the pathogen in different
parts of the plant, even when small amounts of DNA
were used. Neither interference by plant DNA, nor
reaction with several related and unrelated fungal spe-
cies were observed.

The PCR technique used is not quantitative, but
when using the same amounts of DNA and the same
number of amplification cycles, a more intense band was
obtained with DNA isolated 9 days after inoculation
than with DNA isolated 4 days after inoculation. Note
also that the specific product was amplified from plants
inoculated with virulent and from plants inoculated with
low-virulent strains. These results suggest that both
strains can remain in the infected tissues and move as the
plant grows. They also demonstrate the sensitivity of the
method, since low-virulent mutants grew poorly into the
inoculated plants and gave almost no external symptoms
of the infection. Note also that by using higher strin-
gency in the procedure, the results were different when
analyzing different parts of the plants. The results sug-
gest that, by changing the stringency of the PCR reac-
tion, it is possible to follow the movement of the
pathogen in the growing tissues of the infected plants.

Detection of U. maydis by PCR is a useful method to
analyze infection in maize cultivars of different suscep-
tibility, and fungal strains with different degrees of vir-
ulence. It also allows the distribution of the pathogen in
the plant to be studied.
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