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Abstract It is known that soil is a recipient of solid
wastes able to contain enteric pathogens in high con-
centrations. Although the role of soil as a reservoir of
certain bacterial pathogens is not in question, recent
findings show that soil may have a larger role in the
transmission of enteric diseases than previously thought.
Many of the diseases caused by agents from soil have
been well characterized, although enteric diseases and
their link to soil have not been so well studied. Gastro-
intestinal infections are the most common diseases
caused by enteric bacteria. Some examples are salmo-
nellosis (Salmonella sp.), cholera (Vibrio cholerae), dys-
entery (Shigella sp.) and other infections caused by
Campylobacter jejuni, Yersinia sp. and Escherichia coli
O157:H7 and many other strains. Viruses are the most
hazardous and have some of the lowest infectious doses
of any of the enteric pathogens. Hepatitis A, hepatitis E,
enteric adenoviruses, poliovirus types 1 and 2, multiple
strains of echoviruses and coxsackievirus are enteric vi-
ruses associated with human wastewater. Among the
most commonly detected protozoa in sewage are Ent-
amoeba histolytica, Giardia intestinalis and Cryptospori-
dium parvum. This article reviews the existing literature
of more than two decades on waste disposal practices
that favor the entry of enteric pathogens to soil and the
possible consequent role of the soil as a vector and
reservoir of enteric pathogens.
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Introduction

Humans are in contact with soil permanently, either
directly or indirectly via food, water and air; and thus
soil may act as a vector and source of important human
disease agents. Although many of the diseases associated
with soils have been well characterized and studied, en-
teric diseases and their link to soil have been under-
studied and possibly underestimated. In order to clarify
this connection, diseases associated with soil have been
classified depending on the origin [39] of the etiological
agent as follows: (1) soil-associated diseases which are
caused by opportunistic or emerging pathogens that
belong to the normal soil microbiota (e.g. Aspergillus
fumigatus is a very common fungus occurring in soils
and can infect the lungs via inhalation of spores), (2)
soil-related diseases, which result in intoxication from
the ingestion of food contaminated with entero- or
neurotoxins (Clostridium botulinum, C. perfrigens and
Bacillus cereus are some examples of these pathogens),
(3) soil-based diseases caused by pathogens indigenous
to soil (which include C. tetani, B. anthracis, and
C. perfringens) and (4) soil-borne diseases caused by
enteric pathogens which get into soil by means of human
or animal excreta. Enteric pathogens transmitted by the
fecal–oral route are bacteria, viruses, protozoa and
helminths.

Gastrointestinal infections are the most common
diseases caused by enteric bacteria. Some examples are
salmonellosis (Salmonella sp.), cholera (Vibrio cholerae),
dysentery (Shigella sp.) and other infections caused by
Campylobacter jejuni, Yersinia sp. and Escherichia coli
O157:H7 and many other strains. E. coli O157:H7 suc-
cessfully causes infections because of its low infectious
dose (ID), which can be as few as ten cells [28].

Viruses are the most hazardous and have some of the
lowest IDs of any of the enteric pathogens. Hepatitis A,
hepatitis E, enteric adenoviruses, poliovirus types 1
and 2, multiple strains of echoviruses and coxsackievirus
are enteric viruses associated with human wastewater.
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The most commonly detected protozoa in sewage in-
clude Entamoeba histolytica, Giardia intestinalis and
Cryptosporidium parvum. These pathogens cause diar-
rhea and the illness can result from the ingestion of just
ten cysts/oocysts or less [11, 13]. Giardia is the parasite
most commonly detected in gastroenteritis patients in
the United States [15]. Some of the most commonly
detected helminths in wastewater are Ascaris lumbrico-
ides, Necatur americanus, Trichuris trichiura and Stron-
gloides stercolaris [38] and, although they are not
commonly detected in patients in industrialized coun-
tries, they remain as major etiological agents of disease
in countries with poor sanitary facilities.

Sources of soil contamination by enteric pathogens

As a result of the intrinsic characteristics of soil, any
member of the allocthonous or indigenous microbiota
will eventually end up in an aquatic environment or be
dispersed in aerosols. There is a concern about a possible
increase in soil-borne diseases in human populations,
given the successful land disposal practices of sewage
and sewage sludges that result from wastewater treat-
ment. These practices may favor the entry of consider-
able concentrations of enteric pathogens into soil,
because large amounts of these solids are applied to
lands or disposed of in landfills. More than three million
gallons of sewage effluent from more than 3,000 land-
treatment sites and 15 million septic tanks were applied
to land every day 20 years ago [16]. Currently, it is es-
timated that more than seven million dry tonnes of
sewage sludge are produced annually and 54% of this is
applied to soil [7].

A variety of treatment methods, such as composting,
aerobic and anaerobic digestion, alkaline stabilization,
conditioning, dewatering and heat drying, are used in
wastewater-treatment plants to reduce pollutants and to
destroy pathogens. Sludge is the first product of this
treatment and, if additional treatment is given in order
to reduce the pathogen concentrations to specific levels
as indicated below, the material becomes a ‘‘biosolid’’.
Biosolids are classified as either class A or class B, in
categories established by the Environmental Protection
Agency (EPA), based on the following microbiology
criteria: Class A biosolids must have a concentration of
thermotolerant coliforms below 1,000 colony-forming
units (CFU)/g dry weight (dw) by the most probable
number (MPN) method, a Salmonella concentration of
less than 4 CFU/g dw, an enteric virus concentration of
less than four plaque-forming units/g dw and less than
four viable helminth eggs/g dw. Class A biosolids can be
applied to lawns and home gardens and given away to
the public in bags or other containers. In general, they
are used like any commercial fertilizer.

Class B biosolids are required to have a geometric
mean concentration of thermotolerant coliforms of less
than 106 CFU/g dw. Class B biosolids may contain
Escherichia coli, Salmonella, Shigella, Campylobacter,

Cryptosporidium, Giardia, Norwalk virus and enterovi-
ruses [21]. Its use is restricted to land application, forest
lands, reclamation sites and, for a period of time, access
is limited to the public and to livestock grassing and the
harvest schedule is controlled. This time period allows
for the natural die-off of pathogens in the biosolids.

Although the ‘‘Standards for use and application of
sewage sludge’’ (40 CFR, part 503, promulgated by the
EPA) was created for the safe use of these biosolids,
these regulations were based on scientific information
for which no risk assessment studies had been carried
out. There is concern about the effect that the disposal of
these solids may have on public health because: (1) the
fate of these enteric microorganisms in the soil is not
well understood and thus they may be a contamination
source for food or surface- and groundwater, (2) the
infectious dose of some pathogens is low (such as in the
case of Giardia, Cryptosporidium, enteric viruses) and
this could imply a high risk, especially in special popu-
lations, such as the immunocompromised and the el-
derly, (3) there is a possibility of regrowth of pathogenic
bacteria [14, 41], (4) the presence of indicator bacteria,
such as coliforms, which is used as an index of safety,
does not accurately predict the presence of pathogens
and (5) many diseases may be due to unknown agents
and the methods for their detection have not yet been
developed [20]. In fact, one of the major problems in
assessing the microbiological safety of biosolids is pre-
cisely the lack of robust and sensitive methods for the
detection of pathogens.

In developing countries, untreated domestic waste-
water is an important source of enteric pathogens to soil
because it is used in agricultural irrigation. This presents
a high risk to farm workers and to consumers of food
products irrigated with wastewater [34].

Other practices that favor the entry of considerable
amounts of enteric pathogens into the soil environment
are the use of human and animal excreta as manure and
the inadequate disposal of human excreta in national
parks and in general in areas where toilets are not pro-
vided [5]. Feachem et al. [8] present information on the
survival times of some excreted pathogens in soil and on
crop surfaces. Enteroviruses, thermotolerant coliforms
and Salmonella spp persist less than 20 days, V. cholerae
persists less than ten days and helminth eggs may persist
for several months. Blum and Feachem [3] reviewed the
existing epidemiological evidence of the agricultural use
of excreta and they concluded that crop fertilization with
untreated excreta causes significant infections with in-
testinal nematodes and bacteria in consumers and field
workers. Excreta treated by freezing or high temperature
seem to have lower concentrations of pathogens, al-
though many of them can survive these treatments, most
likely as a result of the high concentration of organic
material around them serving as an insulator. For ex-
ample, Salmonella cells are not inactivated by freezing
and are relatively resistant to drying [14, 26], while
helminth egg concentrations are reduced by these
treatments but are not completely eliminated. Taking
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into account that the cyst infectious dose is low, com-
posting practices do not completely eliminate the risk of
infection.

Municipal solid waste (MSW) may be another source
of enteric pathogens to soil because most landfill sites
were constructed without a leachate collection system.
This leachate may contain viruses and bacteria [10]
which can percolate through soil and contaminate
groundwater. In 1993, 62.4% of 205·106 t of MSW
generated in the United States were sequestered in
landfills [23] and 50% of these sites were in the vicinity
of water wells [2]. Enteric pathogens in MSW come from
the excreta present in disposable diapers, pet feces, food
waste and sewage sludge [10].

On-site soil disposal systems (OSDSs) treat domestic
water for 20% of the United States population and
could also result in soil, and consequently groundwater,
contamination [29].

Fate of enteric pathogens in soil

Soil moisture favors the survival of viruses and bacteria.
Reductions in bacterial and viral population densities
are observed under dry soil conditions. Clays favor the
adsorption of microorganisms to soil particles and this
further reduces the die-off rates [12, 40]. Clays protect
bacterial cells, and possibly viral particles, by creating a
barrier against microbial predators and parasites [27].
Thus, the rates of enteric pathogen survival are lower in
sandy soils with a low water-holding capacity. pH affects
the adsorption characteristics of cells, so inactivation
rates in acidic soils are lower. Increases in cation con-
centrations also result in increased adsorption rates,
consequently affecting microbial survival. Soluble or-
ganics increase survival and, in the case of bacteria, may
favor their regrowth when degradable organic matter is
present. Lower temperatures favor bacterial and viral
survival. In laboratory studies, as the temperature in-
creased from 15 �C to 40 �C, the inactivation rate in-
creased significantly for poliovirus type 1 [32]. The
ultraviolet light from the sun inactivates viruses on the
surface of the soil but viruses in deeper layers are not
affected [12].

Microbial movement in soils is dependent on the
water saturation state. Microorganisms move rapidly
under saturated conditions, but only for a few centi-
meters, because microorganisms are in close contact
with soil particles, promoting the adsorption of micro-
organisms onto the soil particles. When soil is saturated,
all pores are filled with water, allowing microorganisms
to pass through the soil. Thus, soil texture controls, in
part, the movement of microorganisms, because fine-
grained soils avoid movement while coarse-grained soils
promote it [1, 31]. Another important environmental
factor affecting microbial movement is rainfall. It can
result in pathogen spread by runoff from places where
manure or biosolids have been applied or by leaching
through the soil profile. It is known that bacterial and

viral groundwater contamination increases during heavy
rainfall. The presence of coliforms was monitored for
9.4 m and 153.3 m wells. Coliforms were detected in
both shallow and deep wells, with bacterial contamina-
tion coinciding with the heaviest rainfalls [12]. In Que-
bec, Canada, human and pig enteroviruses were isolated
from 70% of the samples collected from a river. The
contamination source was attributed to a massive pig-
raising activity in the area [25].

Among enteric pathogens, viruses seem to be some of
the most resistant to inactivation. To study the virus
transport from septic tanks to ground and surface-water
resources, several experiments were carried out using
vaccine poliovirus type 1 as the seed [9]. Seeded viruses
were detected up to 50 m from the septic tank, indicating
they could easily travel through silt loam; and they were
also detected in a nearby lake at 43 days and 71 days
after seeding. In another field study in a farm that had
received anaerobically digested sludge for 7 years, it was
possible to detect viral nucleic acid sequences at points
vertically and laterally displaced from sludge injections
[33]. However, it should be noted that the survival and
transport of viruses in soil is highly dependent on the
type of virus [9].

Outbreaks of soil-borne diseases

Annual summaries of food-borne and water-borne dis-
ease outbreaks published by the Centers for Disease
Control show that, in the past decade, there was an in-
crease in food-borne and water-borne outbreaks caused
by enteric pathogens. It is possible that the water and
food contaminations were related to the practices men-
tioned above. For example, in the United States, water-
borne diseases caused by contaminated ground water
increased in the past decade [6, 20]. Several outbreaks
associated with bacteria, viruses and protozoa were at-
tributed to OSDSs. A cryptosporidiosis outbreak in the
United Kingdom with 47 reported cases had a strong
statistical correlation with two groundwater sources.
One of them had a cross-connection with an OSDS and
the other received surface runoff from a nearby grazing
pasture during heavy rainfalls [4]. A shigellosis outbreak
affected 1,200 people in Florida; and the contamination
was traced to a church’s OSDS [39]. A Norwalk virus
outbreak in Washington affected 72% of the students
and teachers at a grade school [36]. In an outbreak in
Wyoming, 157 persons were infected with E. coli
O157:H7 and the source was assumed to be fecal con-
tamination by wildlife near a spring well [20].

Fruits and vegetables frequently come in contact with
soil post-harvest and thus may become contaminated
with soil enteric pathogens present in sewage sludge or
manure spread. There are many examples of food-borne
outbreaks traced to fresh fruits and vegetables. One of
the first cases of infection with E. coli O157:H7 linked to
the use of animal excreta as manure was with an ovo-
vegetarian woman who consumed almost exclusively the

7



food produced in her garden, in which she used the
manure from her own cow as a fertilizer [22]. In 1970, an
outbreak occurred as a result of the ingestion of vege-
tables irrigated with wastewater. Further studies indi-
cated that V. cholerae was present in the irrigated soils
[30].

Unpasteurized juice and cider contaminated with
E. coli O157:H7, Salmonella [20] and Cryptosporidium
[19] have been implicated in several outbreaks in the
United States and Canada. Fruit juice and cider may
become contaminated as a result of the fruit falling to
the ground and coming in contact with soil which may
contain pathogens from animal excreta or sewage sludge
used as fertilizer. Unpasteurized juice has been associ-
ated with at least 15 food-borne illness outbreaks since
1900 [24]. Several reports of raw sprouts have also been
linked to outbreaks of food-borne illness with E. coli
O157:H7 [18] and Salmonella [35] as the etiological
agents.

Ingestion of soil, or geophagia, is another way in
which humans, and especially infants and young chil-
dren, can get infected with enteric pathogens [37]. Al-
though geophagia is the voluntary ingestion of soil,
involuntary ingestion as a result of wind could present a
risk to immunocompromised individuals and other
special populations [17, 37].

Concluding remarks

Data are scarce and in fact are mostly non-existent as
far as the role of soil as a vector or reservoir of enteric
infections for humans and animals is concerned. In the
absence of data, it would be impossible to carry out
risk assessment studies to determine the true danger of
the presence of enteric microorganisms in soil. In any
case, it seems obvious to assume that any microor-
ganisms present in soil, either allocthonous or autoc-
thonous, will eventually end up in the water or air as a
result of run-off and wind. Thus, the role of soil when
carrying out studies on enteric diseases cannot be ob-
viated.

Studies are needed to determine the true risk of en-
teric infections related to soil ingestion. Among the
studies that need to be carried out are: (1) the survival of
enteric microorganisms in different types of soil, (2) the
ability of different types of soils to either protect or in-
activate pathogenic microorganisms, (3) the ability of
pathogens to invade and colonize vegetables that are
eaten raw, (4) the development of methods for the de-
tection and quantitation of enteric pathogens in soils
and (5) risk assessment.

During enteric disease outbreaks, most studies focus
on the role of either water or food as the source of the
pathogens. However, the intermittent presence of enteric
pathogens in, for instance, water makes their detection
difficult. However, if soil is in fact an important source
of microorganisms, it may be easier to detect them in
this matrix when methods are developed and standard-

ized. The development of robust detection methods and
studies on the ecology of enteric pathogens in soils
should be a priority; and without these data, a true
characterization of public health risk as a result of direct
or indirect exposure to soils will be impossible.

References

1. Abu-Ashour J, Joy DM, Lee H, Whiteley HR (1994) Transport
of microorganisms through soil. Water Air Soil Pollut 75:141–
158

2. Barlaz MA (1996) Microbiology of solid waste landfills. In:
Palmisano AC, Barlaz MA (eds) Microbiology of solid waste.
CRC Press, New York

3. Blum D, Feachem RG (1985) Health aspects of night soil and
sludge use in agriculture and aquaculture—Part III. (Interna-
tional reference centre for waste disposal report no. 05/85)
IRCD, Dubendorf

4. Bridgman SA, Robertson RMP, Syed Q, Speed N, Andrews N,
Hunter PR (1995) Outbreak of cryptosporidiosis associated
with a disinfected groundwater supply. Epidemiol Infect
115:555–566

5. Cilimburg A, Monz C, Kehoe S (2000) Wildland recreation and
human waste: a review of problems, practices, and concerns.
Environ Manag 25:587–598

6. Craun GF, Calderon RL (1996) Microbial risk in groundwater
systems: epidemiology of waterborne outbreaks. In: Ground-
water Foundations (ed) Under the microscope: examining mi-
crobes in groundwater. Groundwater Foundations, Boston

7. Environmental Protection Agency (2002) Land application of
biosolids. (Office of inspector general status report 2002-S-
000004) http://www.epa.gov/oigearth/eroom.htm

8. Feachem GG, Bradley DJ, Garelick H, Mara DD (1983)
Sanitation and disease—health aspects of excreta and waste-
water management. (World bank studies in water supply and
sanitation 3) Wiley, Chichester

9. Gerba CP (1987) Transport and fate of viruses in soil: field
studies. In: Rao VC, Melnick JL (eds) Human viruses in sedi-
ments, sludges and soils. CRC Press, Boca Raton, Fla

10. Gerba CP (1996a) Microbial pathogens in municipal solid
waste. In: Palmisano AC, Barlaz M (eds) Microbiology of solid
waste. CRC Press, New York, pp 155–173

11. Gerba CP (1996b) Pathogens in the environment. In: Pepper
IL, Gerba CP, Brusseau ML (eds) Pollution science. Academic
Press, San Diego, pp 279–300

12. Gerba CP, Bitton G (1984) Microbial pollutants: their survival
and transport pattern to groundwater. In: Bitton G, Gerba CP
(eds) Groundwater pollution microbiology. Wiley, New York,
pp 39–54

13. GreaterVancouverRegionalDistrict (2000)Recycling biosolids
to soil pathogen reduction. (The biosolids report no. 1) http://
www.gvrd.bc.ca/nutrifor/publications/BR-pathogens.pdf

14. Hay CJ (1996) Pathogen destruction and biosolids composting.
BioCycle 67–76

15. Hibler C P, Hancock CM (1990) Waterborne giardiasis. In:
McFeters GA (ed) Drinking water microbiology: progress and
recent development. Springer, Berlin Heidelberg New York,
pp 271–293

16. Keswick BH (1984) Sources of ground water pollution. In:
Bitton G, Gerba CP (eds) Groundwater pollution microbiolo-
gy. Wiley, New York, pp 39–54

17. Lagoy PK (1987) Estimated soil ingestion rates for the use in
risk assessment. Risk Anal 7:355–359

18. Morbidity and Mortality (1997a) Outbreaks of Escherichia coli
O157:H7, an infection associated with eating alfalfa sprouts.
Michigan and Virginia. Morbid Mortal Wkly Rep 46:741–743

19. Morbidity and mortality (1997b) Outbreaks of Escherichia coli
O157:H7 and cryptosporidiosis associated with drinking un-
pasteurized apple cider. Morbid Mortal Wkly Rep 46:4–8

8



20. Morbidity and mortality (2000) Surveillance for waterborne
disease outbreaks. United States, 1997–1998. Morbid Mortal
Wkly Rep 49:1–35

21. NIOSH (2002) Guidance for controlling potential risk to work-
ers exposed to class B biosolids. (Publication no. 2002-149)
http://www.cdc.gov/niosh/docs/preprint/pdfs/biosolidsb.pdf

22. OMRI (1998) Use of manure, compost and sewage sludge in
the December 1997 proposed national organic program. http://
www.OMRI.org/USDA.html

23. Palmisano AC, Barlaz MA (1996) Introduction to solid waste
decomposition. In: Palmisano AC, Barlaz MA (eds) Microbi-
ology of solid waste. CRC Press, New York

24. Parish ME (1997) Public health and nonpasteurized fruit juices.
Crit Rev Microbiol 23:109–119

25. Payment P (1989) Presence of human and animal viruses in
surface and ground water. Water Sci Technol 21:283–285

26. Plym-Forshell L, Ekesbo I (1993) Survival of Salmonella in
composted and not composted animal manure. J Vet Med B
40:654–658

27. Roper MM, Marshall KC (1978) Effects of a clay mineral on
microbial predation and parasitism on Escherichia coli. Microb
Ecol 4:279–289

28. Rosen BH (2000) Waterborne pathogens in agricultural
watersheds. USDA–Natural Resources Conservation Service.
http://www.wcc.nrcs.usda.gov/watershed/projects/html

29. Scandura JE, Sobsey MD (1997) Viral and bacterial contami-
nation on ground water from on site sewage treatment systems.
Water Sci Technol 35:141–146

30. Shuval HI, Adin A, Fattal B, Rawitz E, Yekutiel P (1986)
Wastewater irrigation in developing countries, health effects
and technical solutions. In: UNDP (ed) UNDP project man-
agement report 6. (Integrated resource recovery series CLO/80/
004) World Bank, Washington, D.C., pp 27–57

31. Sinton LW (1986) Microbial contamination of alluvial gravel
aquifers by septic tank effluent.Water Air Soil Pollut 28:407–425

32. Straub TM, Pepper IL, Gerba CP (1992) Persistence of viruses
in desert soils amended with anaerobically digested sewage
sludge. Appl Environ Microbiol 58:636–641

33. Straub TM, Pepper IL, Gerba CP (1995) Comparison of PCR
and cell culture for detection of enteroviruses in sludge
amended field soils and determination of their transport. Appl
Environ Microbiol 61:2066–2068

34. Strauss M (1994) Health implications of excreta and waste-
water use. Hubei environmental sanitation study, 2nd work-
shop. Hubei, Wuhan

35. Tauxe R, Kruse H, Hedberg C, Potter M, Madden J, Wachs-
muth W (1997) Microbial hazards and emerging issues associ-
ated with produce: a preliminary report to the national
advisory committee on microbiological criteria for foods.
J Food Prot 60:1400–1408

36. Taylor JW, Gary GW, Greenberg HB (1981) Norwalk related
viral gastroenteritis due to contaminated drinking water. Am
J Epidemiol 114:584–592

37. Toranzos GA, Marcos RP (1997) Human enteric pathogens
and soil-borne diseases. In: Bollag JM, Stotzky G (eds) Soil
biochemistry. Dekker, New York, pp 461–481

38. Toze S (1997) Microbial pathogens in wastewater. Litera-
ture review for urban water systems. (Multidivisional re-
search program. CSIRO land and water technical report
no. 1/97) http://www.clw.csiro.au/publications/technical/trl-
97.pdf

39. Weissman JB, Graun GF, Lawrence DN, Pollard RA, Saslaw
MS, Gangarosa EJ (1976) An epidemic of gastroenteritis traced
to a contaminated public water supply. Am J Epidemiol
103:391–398

40. Yeager JG, O’Brien RT (1979) Enterovirus inactivation in soil.
Appl Environ Microbiol 694–701

41. Yeager JG, Ward RL (1981) Effects of moisture content on
long term survival and regrowth of bacteria in wastewater
sludge. Appl Environ Microbiol 41:1117–1122

9


