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Abstract Microbial activity is responsible for the
transformation of at least one third of the elements in
the periodic table. These transformations are the result
of assimilatory, dissimilatory, or detoxification processes
and form the cornerstones of many biogeochemical cy-
cles. Arsenic and selenium are two elements whose roles
in microbial ecology have only recently been recognized.
Known as ‘‘essential toxins’’, they are required in trace
amounts for growth and metabolism but are toxic at
elevated concentrations. Arsenic is used as an osmolite
in some marine organisms while selenium is required as
selenocysteine (i.e. the twenty-first amino acid) or as a
ligand to metal in some enzymes (e.g. FeNiSe hydrog-
enase). Arsenic resistance involves a small-molecular-
weight arsenate reductase (ArsC). The use of arsenic and
selenium oxyanions for energy is widespread in prok-
aryotes with representative organisms from the Cre-
narchaeota, thermophilic bacteria, low and high G+C
gram-positive bacteria, and Proteobacteria. Recent
studies have shown that both elements are actively cy-
cled and play a significant role in carbon mineralization
in certain environments. The occurrence of multiple
mechanisms involving different enzymes for arsenic and
selenium transformation indicates several different evo-
lutionary pathways (e.g. convergence and lateral gene
transfer) and underscores the environmental significance
and selective impact in microbial evolution of these two
elements.
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Introduction

Microorganisms are involved in a variety of element
transformations including a change in valence (i.e. oxi-
dation/reduction) or chemical form (i.e. solid, liquid,
gas). Many of these transformations are key steps in
biogeochemical cycles. For example, the conversion of
dinitrogen gas to organic nitrogen (in the form of am-
monium) by nitrogen-fixing bacteria is crucial for com-
munities in low-nitrogen environments and an
important intermediate in the global nitrogen cycle. To
date, over 40 elements (in their elemental form or their
compounds) are known to be affected by microbial ac-
tivity. These include the ‘‘major’’ (i.e. carbon, nitrogen,
sulfur, oxygen, hydrogen, phosphorus), ‘‘minor’’ (i.e.
magnesium, iron, calcium, potassium) and ‘‘trace’’ (i.e.
manganese, molybdenum, tungsten, copper, nickel, se-
lenium, and zinc) elements that make up a cell’s chem-
istry. In addition, there are elements needed for specific
structure (i.e. skeletal) or function (i.e. catalytic site of
an enzyme). Their transformation may be the result of
assimilatory processes in which an element is incorpo-
rated into cell biomass, dissimilatory processes in which
transformation results in the generation of energy, or
detoxification [71].

Arsenic and selenium are two elements whose sig-
nificance in microbial ecology has only recently been
recognized [57, 58, 71]. They have some characteristics in
common, situated next to each other on the fourth pe-
riod of the periodic table (As with atomic number 33
and Se with atomic number 34). Their most common
chemical oxidation states, however, are different. The
primary oxidation states for arsenic are As(V), As(III),
As(0), and As(-III), while those for selenium are Se(VI),
Se(IV), Se(0), and Se(-II). Both have been called ‘‘es-
sential toxins’’ because they are required in trace
amounts for growth and metabolism but are toxic at

Int Microbiol (2002) 5: 201–207
DOI 10.1007/s10123-002-0091-y

J.F. Stolz (&)
Department of Biological Sciences,
Duquesne University, Pittsburgh, PA 15282, USA
E-mail: stolz@duq.edu
Tel.: +1-412-3966333
Fax: +1-412-3965907

P. Basu
Department of Chemistry and Biochemistry,
Duquesne University, Pittsburgh, PA 15282, USA

R.S. Oremland
U.S. Geological Survey, Mail Stop 480,
345 Middlefield Rd., Menlo Park, CA 94025, USA

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.2     Für schnelle Web-Anzeige optimieren: Ja     Piktogramme einbetten: Ja     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 600 600 ] dpi     Papierformat: [ 595.276 785.197 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 600 dpi     Downsampling für Bilder über: 900 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Alles für Farbverwaltung kennzeichnen (keine Konvertierung)     Methode: StandardArbeitsbereiche:     Graustufen ICC-Profil: Dot Gain 10%     RGB ICC-Profil: sRGB IEC61966-2.1     CMYK ICC-Profil: R705-Noco-gl-01-220499-ICCGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Nein     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Nein     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: NeinANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile (Dot Gain 10%)     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /UseDeviceIndependentColor     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (R705-Noco-gl-01-220499-ICC)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 600 600 ]>> setpagedevice



high concentrations. They have similar modes of toxicity
and are used as antagonists (i.e. arsenic is used for
treatment of selenium poisoning and vice versa) [18, 67].
Events such as the loss of wildlife in the Kesterson
National Wildlife Refuge due to selenium contamination
[61], and the continuing devastation to the people of
Bangladesh due to arsenic in their drinking water [49, 50]
have promoted the investigation of the role microorgan-
isms play in the mobilization and speciation of these two
elements. The purpose of this review is to provide a brief
overview of the microbial processes involved in the
transformation of oxyanions of arsenic and selenium.
Further information can be found in several recent
reviews [48, 57, 58, 71] and two book volumes [15, 16].

Arsenic transformation

While arsenic has an historically infamous reputation as
a poison [6], its biological uses are less well known.
Arsenate is a chemical analog of phosphate and can
uncouple mitochondrial oxidative phosphorylation [26].
Arsenite has a high affinity for thiol groups and affects
respiration by binding to the vicinal thiols in pyruvate
dehydrogenase and 2-oxoglutarate dehydrogenase [52].
It has recently been shown to affect the function of the
glucocorticoid receptor [34]. The methylated forms of
arsenic, such as monomethylarsonic (MMA) and dime-
thylarsonic acid (DMA), have been thought to be less
toxic and the main route of detoxification in mammals
[8]. Recent studies, however, have revealed that not all
mammals have methyl transferases [80], and that the
methylated species can also have deleterious effects.
Paradoxically, organoarsenicals (e.g., arsenobetaine,
arsenocholine) are common in marine organisms [4], and
while arsenic is added to chicken feed (i.e. Roxarsone) as
a prophylactic against coccidial infections [11], it also
promotes growth [52].

Two mechanisms for arsenic detoxification have been
described. The first mechanism is methylation with ei-
ther arsenate or arsenite being methylated. In higher
eukaryotes, glutathione reduces arsenate to arsenite,
which then accepts a methyl group from S-adenosyl-
methionine producing MMA or DMA [52]. An 85-kDa
methyltransferase has been identified as mediating the
last step [52]. In some bacteria, arsenite is first oxidized
to arsenate by a specific enzyme, arsenite oxidase, with
the arsenate subsequently methylated [5,19]. The second
mechanism, which has been found in bacteria, yeast, and
some lower eukaryotes, is the ArsC system [21, 31, 32,
69]. ArsC is a small-molecular-mass protein (13–
15 kDa) that mediates the reduction of As(V) to As(III)
in the cytoplasm. While As(III) is more toxic, it can be
excreted via an As(III)-specific transporter, ArsB [69].
Although originally described as being plasmid borne,
chromosomal loci have been found in over 25 species of
bacteria, yeasts, and protoctists. While at least three
distinct ArsC systems are believed to exist, the system
has been best described in bacteria. The ars operon of

plasmid R733 from Escherichia coli comprises arsA,
arsB, arsC, arsD and arsR, whereas the chromosomal
locus has only arsB, arsC, and arsR [21, 45]. A cysteine
residue near the N-terminal of ArsC binds the arsenate,
which is transformed to As(III) with electrons donated
by reduced glutathione. As(III) is then expelled from the
cytoplasm through an ATP-dependent arsenite trans-
porter formed by ArsAB [45]. The ars operon in plasmid
pI258 of Staphylococcus aureus contains only arsB, arsC,
and arsD [31, 32]. In this case, reduced thioredoxin
provides the electrons to reduce As(V), and arsenite is
expelled from the cell via an ATP-independent ArsB [31,
32].

The widespread ability to utilize the transformation
of arsenic oxyanions for the generation of energy has
only recently been elucidated [48, 57, 58, 71] . Sixteen
species of prokaryotes are known to have the ability to
use arsenate as a terminal electron acceptor (Table 1).
These include representatives from the Crenarchaeota,
thermophilic bacteria, low and high G+C gram-positive
bacteria, and Proteobacteria (Fig. 1).

To date, only the respiratory arsenate reductase from
Chrysiogenes arsenatis has been studied in any detail
[38]. A periplasmic enzyme, it is comprised of subunits
of 87 and 29 kDa. N-terminal sequence data suggest
that both subunits contain an iron-sulfur cluster, and
metals analysis has confirmed the presence of Mo, Fe,
and S [38]. The protein sequence and the presence of two
pyranopterin cofactors per molybdenum atom places
this protein in the DMSO reductase subfamily of
mononuclear molybdenum enzymes [25]. It is most
closely related to polysulfide reductase and formate de-
hydrogenase F [38]. The enzyme has an apparent Km of
300 lM and can use benzyl viologen as an electron do-
nor [38]. Initial investigations of the arsenate reductase
from the haloalkaliphilic gram-positive bacterium Ba-
cillus selenitireducens revealed similar characteristics. N-
terminal sequence analysis indicates a 50% sequence
identity and 85% similarity of both ArrA and ArrB
subunits (Afkar and Stolz, unpublished results). In
contrast, the putative arsenate reductase from Sulfuro-
spirillum barnesii is membrane bound, consists of a sin-
gle subunit (48 kDa) and has no metal associated with it
(Newman et al., submitted manuscript). It has a com-
parable Km of 200 lM, and NADH can also be used as
an electron donor. Enzymological and immunological
analyses further indicate that S. barnesii and related
Sulfurospirillum species (S. arsenophilum, S. deleyianum)
do not have a Chrysiogenes-type arsenate reductase.

The oxidation of arsenite to arsenate is used both for
detoxification and for energy generation. Over thirty
strains representing at least nine genera of arsenite oxi-
dizing prokaryotes have been reported and include
a-, b-, and c-Proteobacteria, Deinocci (i.e. Thermus),
and Crenarchaeota. Physiologically diverse, they include
heterotrophic and chemolithoautotrophic species
(Table 2).

While the majority of these organisms use oxygen, a
c-proteobacterium isolated from Mono Lake, Califor-
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nia, strain MLHE-1, oxidizes arsenite under anoxic
conditions using nitrate as the terminal electron acceptor
[59]. The physiological role of arsenite oxidation in the
most well studied organism, Alcaligenes faecalis (which
has recently been shown to belong to the genus Achro-
mobacter [64]), has been subject to debate. While con-
sidered a heterotroph in some reports, studies have
shown the presence of a periplasmic electron transfer
chain consisting of arsenite oxidase, azurin (a copper-
containing protein), cytochrome c, and cytochrome c
oxidase [5,60]. The significance of this is that its arsenate
oxidase has been purified [5] and its crystal structure
determined [14]. A mononuclear molybdenum enzyme
belonging to the DMSO class, it is structurally similar to
the periplasmic nitrate reductase (NapA) from Desulf-
ovibrio desulfuricans [14]. Comprising two subunits, the
catalytic subunit (�85 kDa) contains molybdenum
bound to two pterin cofactors and a [3Fe-4S] cluster.
The associated subunit (�14 kDa) presumably functions
as an electron shuttle and has a Rieske-type [2Fe-2S]
cluster, a feature that is unique among molybdenum
enzymes [14]. In addition, unlike other members of the
DMSO reductase family, the molybdenum center is not
coordinated by any endogenous protein ligand. Whether
these will be common characteristics of all arsenite
oxidases remains to be determined.

Arsenic is an important factor in biogeochemical
cycling. While not considered an abundant element, it
can reach significant concentrations in hydrothermal,
sulfidic, evaporitic, and iron-hydroxide-rich environ-
ments [79]. Arsenate-respiring bacteria affect the speci-
ation and mobilization of arsenic as they have been
shown to release arsenite from sediments [3, 33] and
ferrihydrite [81], as well as grow on arsenate-containing
minerals (i.e. Scorodite) [47]. The discovery of chemo-
lithoautotrophic arsenite oxidizers suggests that they
could contribute to the overall carbon budget of mi-
crobial communities in arsenic-rich environments [27,
56, 59, 63, 64]. Arsenate respiration has been linked to
the mineralization of �14% of the photosynthate fixed
during meromixis in Mono Lake, California [56]. The
rates of arsenate respiration were so significant that they
indicated a need for microbial oxidation and led to the
discoveries of the anaerobic arsenite oxidizer and a ro-
bust arsenic cycle in the lake [56,59].

Selenium tranformation

Selenium is similar to arsenic in many respects. Sele-
nium is an analog of sulfur and substitutes for sulfur in
thiols. In high doses it causes respiratory distress, is

Table 1 Arsenate, selenate, and selenite respiring prokaryotes. TEA Terminal electron acceptor

Species Phylogeny TEA Reference

Pyrobaculum aerophilum Crenarchaeota Arsenate, selenate [29]
Pyrobaculum arsenicum Crenarchaeota Arsenate, selenate [29]
Thermus sp. HR13 Thermus Arsenate [20]
Chrysiogenes arsenatis Chrysiogenes Arsenate [42]
Salana multivorans Gram +, high G+C Selenate [78]
Bacillus selenitireducens Gram +, low G+C Arsenate, selenite [73]
Bacillus arsenicoselenatis Gram +, low G+C Arsenate, selenate [73]
Bacillus sp. JMM-4 Gram +, low G+C Arsenate [65]
Bacillus sp. HT-1 Gram +, low G+C Arsenate [24]
Clostridium sp. OhILAs Gram +, low G+C Arsenate (A. Dawson, J. Lisak, and

J.F. Stolz, unpublished)
Desulfitobacterium sp. OhF2 Gram +, low G+C Selenate (T. Kuchan, J. Lisak, and

J.F. Stolz, unpublished)
Desulfitobacterium sp. GBFH Gram +, low G+C Arsenate [51]
Desulfotomaculum
auripigmentum

Gram +, low G+C Arsenate [47]

Selenihalanaerobacter schriftii Halanaerobacter Selenate [74]
Bordetella petrii b-Proteobacteria Selenate [77]
Thauera selenatis b-Proteobacteria Selenate [41]
Aeromonas hydrophila c-Proteobacteria Selenate [36]
Citrobacter sp. TCA-1 c-Proteobacteria Selenate [24]
Shewanella sp. c-Proteobacteria Arsenate (Venkateswaran, K., D. Newman,

and K.H. Nealson, unpublished)
JSA c-Proteobacteria Selenate (T. Sakaguchi, E.Tamiya, and

K.Yokoyama, unpublished)
TSA c-Proteobacteria Selenate (T. Sakaguchi, E.Tamiya, and

K.Yokoyama, unpublished)
AK4OH1 c-Proteobacteria Selenate [37]
Ke4OH1 c-Proteobacteria Selenate [37]
Desulfomicrobium sp. Ben-RB d-Proteobacteria Arsenate [43]
Wolinella succinogenes �-Proteobacteria Selenate (M.A. Rasmussen and

T.L. Giblin, unpublished)
Wolinella succinogenes R-1 �-Proteobacteria Arsenate, selenate [24]
Sulfurospirillum barnesii �-Proteobacteria Arsenate, selenate [40, 55,72]
Sulfurospirillum arsenophilum �-Proteobacteria Arsenate [2,72]
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teratogenic, and has clinical manifestations (e.g., blind
staggers, alkali disease) [23, 28]. Trace amounts, how-
ever, are essential and it is often added to livestock feed
[23]. The common biological forms are selenocysteine
(the twenty-first amino acid) and selenomethionine.
Selenocyteine is encoded by its own tRNA and pro-
vides the selenium in glycine reductase, formate dehy-
drogenase, and NiFeSe hydrogenase [17, 23, 46].
Selenium is assimilated in yeast and plants via the
sulfur assimilation pathway [12,23]. Selenate is acti-
vated by ATP sulfurylase and subsequently converted
to selenomethione [12]. While a similar mechanism has
been proposed for prokaryotes, some studies have
suggested specific mechanisms for the uptake of sele-
nate and selenite [9, 10]. The reaction of selenite with
glutathione produces selenodiglutathione. Selenodiglu-

tathione and its subsequent reduction to glutathiosele-
nol are key intermediates in the transformation of
selenium [76].

Several different mechanisms are known for the det-
oxification of selenium. As with arsenic, methylation via
a methyltranferase is a common mode of removal in
eukaryotes [22] and prokaryotes [23]. Again, the reac-
tivity of glutathione and other reduced species (i.e.
dithiothreitol) with selenium creates a number of dif-
ferent intermediates. Selenocystine can be reduced to
hydrogen selenide by reduced glutathione via selenocy-
steine-glutathione selenenyl sulfide [66]. Another strate-
gy for detoxification is the reduction of selenite to
elemental selenium. Selenium deposits may collect in the
cytoplasm [7, 35], periplasm, or extracellularly [73, 74].
The phototrophic bacterium Rhodospirillum rubrum has

Fig. 1 Phylogenetic tree of
prokaryotes that respire arsenic
and selenium oxyanions con-
structed using distance matrix
analysis (PAUP) [74]. Organ-
isms not in bold type and in a
smaller font are non-arsenic
and non-selenium respiring
species that were added to help
define specific branches
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been shown to expel elemental selenium across the
plasma membrane and cell wall [35].

The use of selenium oxyanions, primarily selenate, as
terminal electron acceptors is also widespread among
prokaryotes, with at least two species of Crenarchaeota
and fifteen species of bacteria (Fig. 1, Table 1). The re-
spiratory selenate reductase from Thauera selenatis has
been purified and characterized, and the genes encoding
it cloned and sequenced [39, 68]. A heterotrimeric
enzyme composed of subunits of 96, 40 and 23 kDa,
it contains Mo, Fe, and S and has a visible spectrum
indicative of a cytochrome b558 [68]. Located in the
periplasm, it has a Km for selenate of 16 lM. The ser
operon contains four open reading frames, serA, serB,
serC, and serD [39]. serA is the molybdenum-containing
catalytic subunit. A member of the DMSO class of
mononuclear molybdenum enzymes, it is most closely
related to the membrane-bound nitrate reductase
(NarG) of Haloarcula marismortuii (Stolz, unpublished
data). serB contains four iron-sulfur cluster-binding sites
while the serC is the putative cytochrome b558. Similar to
the function of narJ, serD may be a chaperone protein
[39]. The enzyme has been crystallized recently, but its
structure has yet to be elucidated [44].

Selenate respiring bacteria may also influence the
speciation and mobility of selenium in the environment.
Microbially driven selenate reduction, which has been
found in a wide range of sediment types, results in the
precipitation of elemental selenium [53, 54, 70]. While
the remobilization of selenium through oxidation does
occur, the rates are three to four orders of magnitude
less than the reductive part of the cycle [13]. Thus unlike
arsenic, microbial activity actually removes selenium
from the environment.

Conclusions

Arsenic and selenium represent two examples of element
transformation by prokaryotes. Prokaryotes with the
ability to methylate, oxidize, or reduce inorganic and
organic species of arsenic and selenium are widespread
in nature and not confined to contaminated environ-
ments. This suggests that arsenic and selenium are more
important in microbial ecology than previously recog-
nized. The occurrence of multiple mechanisms for arse-
nate reduction is an indication of convergent evolution,
whereas the presence of similar terminal reductases in

distantly related species is suggestive of horizontal gene
transfer. In addition, the phylogenetic diversity of spe-
cies that can metabolize these two elements suggests that
they are significant selective agents in microbial evolu-
tion.
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