Adaptation of bacterial communities to environmental transitions from labile to refractory substrates Authors Subramanian Karthikeyan Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Darren R. Korber Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Gideon M. Wolfaardt Department of Microbiology, University of Stellenbosch, Stellenbosch, South Africa Douglas E. Caldwell Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Keywords: biofilms, restructuring, environmental transitions, biofilm architecture, microbial communities Abstract The aim of this work was to assess the adaptation of bacterial communities to environmental transitions from labile to refractory substrates. This involved testing the hypothesis that bacteria self-organize and propagate not only as individual cellular systems, but also as functional sets of interacting organisms. A biofilm community was cultivated in a flow-cell irrigated with tryptic soy broth and subjected to a cyclic series of environmental transitions, from labile to refractory substrates, followed by a period of starvation (30 days). The appearance and disappearance of specific colony morphotypes when the emigrants were plated onto tryptic soy agar was used to monitor the restructuring of the community. Confocal laser microscopy of flow cells showed that these transitions decreased the biofilm thickness and coverage. Substrate shifts also changed the architecture of the biofilm communities. Repeated inoculation of flow-cell communities with a composite inoculum increased the number and diversity of emigrants. Their biofilms were thicker and covered a wider area than those of communities that had been inoculated only at the beginning of the experiment. With repeated inoculation, the time required for the community to restructure and stabilize decreased during most transitions. This suggested that organismal recombination acted as a mechanism of adaptation, enhancing the growth of microbial communities exposed to environmental stresses. Changes in the profiles of emigrants during the adaptation of biofilm communities to environmental transitions showed the appearance and disappearance of discrete sets of organisms. This suggested that the biofilm communities responded to environmental stresses as sets of interacting organisms. Enhanced growth of biofilm communities due to repeated environmental cycling suggested that the functionality of cellular positioning accrued from one cycle to the next and was thus heritable, although it was not necessarily genetically encoded. Downloads PDF Published 2010-03-12 Issue Vol. 4 No. 2 (2001) Section Research Articles License Submission of a manuscript to International Microbiology implies: that the work described has not been published before, including publication in the World Wide Web (except in the form of an Abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that all the coauthors have agreed to its publication. The corresponding author signs for and accepts responsability for releasing this material and will act on behalf of any and all coauthors regarding the editorial review and publication process.If an article is accepted for publication in International Microbiology, the authors (or other copyright holder) must transfer to the journal the right–not exclusive–to reproduce and distribute the article including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature. Nevertheless, all article in International Microbiology will be available on the Internet to any reader at no cost. The journal allows users to freely download, copy, print, distribute, search, and link to the full text of any article, provided the authorship and source of the published article is cited. The copyright owner's consent does not include copying for new works, or resale. In these cases, the specific written permission of International Microbiology must first be obtained.Authors are requested to create a link to the published article on the journal's website. The link must be accompanied by the following text: "The original publication is available on LINK at <http://www.im.microbios.org>. Please use the appropiate URL for the article in LINK. Articles disseminated via LINK are indexed, abstracted, and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.