Identification of synergistic interactions among microorganisms in biofilms by digital image analysis Authors Subramanian Karthikeyan Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Gideon M. Wolfaardt Department of Microbiology, University of Stellenbosch, South Africa Darren R. Korber Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Douglas E. Caldwell Department of Applied Microbiology and Food Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada Keywords: satellite colonies, protective interactions, food preservation, sodium benzoate, synergism Abstract Digital image analysis showed that reductions in biofilm plating efficiency were due to the loss of protection provided by two benzoate-degrading strains of Pseudomonas fluorescens. This loss in protection was due to the spatial separation of the protective organisms from benzoate-sensitive organisms during the dilution process. Communities were cultivated in flow cells irrigated with trypticase soy broth. When the effluent from these flow cells was plated on 0.15% benzoic acid, satellite colonies formed only in the vicinity of primary colonies. A digital image analysis procedure was developed to measure the size and spatial distribution of these satellites as a function of distance from the primary colony. The size of satellites served as a measure of growth, and the number per unit area served as a measure of survival. At the three dilutions tested, the size and concentration of satellite colonies varied inversely with distance from the primary colonies. When these measurements were plotted, the slopes were used to quantify the effect of bacterial association on the growth and survivability of the satellites. In the absence of the primary colonies, satellites grew in axenic culture only at low benzoate concentrations. Thus benzoate-degrading organisms are capable of creating a protective microenvironment for other members of biofilm communities. Downloads PDF Published 2010-03-16 Issue Vol. 2 No. 4 (1999) Section Research Articles License Submission of a manuscript to International Microbiology implies: that the work described has not been published before, including publication in the World Wide Web (except in the form of an Abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that all the coauthors have agreed to its publication. The corresponding author signs for and accepts responsability for releasing this material and will act on behalf of any and all coauthors regarding the editorial review and publication process.If an article is accepted for publication in International Microbiology, the authors (or other copyright holder) must transfer to the journal the right–not exclusive–to reproduce and distribute the article including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature. Nevertheless, all article in International Microbiology will be available on the Internet to any reader at no cost. The journal allows users to freely download, copy, print, distribute, search, and link to the full text of any article, provided the authorship and source of the published article is cited. The copyright owner's consent does not include copying for new works, or resale. In these cases, the specific written permission of International Microbiology must first be obtained.Authors are requested to create a link to the published article on the journal's website. The link must be accompanied by the following text: "The original publication is available on LINK at <http://www.im.microbios.org>. Please use the appropiate URL for the article in LINK. Articles disseminated via LINK are indexed, abstracted, and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.