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Introduction

Aphids and Buchnera aphidicolahave a symbiotic relationship
[1, 2]. Aphids are dependent on Buchnerafor normal growth
and reproduction, whereas they supply Buchnerawith a constant
intracellular environment. Aphids feed on plant phloem sap, a
diet rich in carbohydrates but deficient in nitrogenous compounds,
including most essential amino acids. It is proposed that Buchnera
actively provides aphids with amino acids. Several physiological
[6–9] as well as genetic studies give support to this hypothesis
[3, 13–15, 19]. For instance, it has been demonstrated that
Buchneraundergoes changes by different aphid species in the
biosynthetic pathway of amino acids such as tryptophan and
leucine. However, Buchnerahas retained most of the genes that
are present in free living bacteria [1–3, 5, 11].

B. aphidicolaresides in specialized cells in the aphid hemocoel
called bacteriocytes, and it is maternally inherited through
controlled infection of eggs and embryos. Additionally, other
bacteria have been found in some aphid species; but their location
has not been well defined and whose symbiotic role has not yet
been determined. They are called secondary endosymbionts.

Based on sequence data from Buchneraand morphological
and fossil record data from aphids, it has been possible to
reconstruct the evolutionary history of the symbiotic association.
It is characterized by two major events: (i) the symbiosis has
a single origin that took place 150–250 million years ago, and
(ii) aphids and symbionts have diverged in parallel.

The objective of the present paper is to summarize some
of the genetic changes that Buchnerahas experienced since its

integration, and also to propose a model of the genetic changes
that might be expected when considering ongoing endosym-
biotic processes in insects.

Aphid species, endosymbionts 
and sequences

Seventeen species corresponding to five aphid families were
used in the present study (see Table 1). All these species
contained Buchnera aphidicolaand in some of them we had
evidence (see below) based on sequence data that they also had
secondary endosymbionts. Table 2 shows a list of aphid species
of which we obtained partial sequences of the gene coding for
the b-subunit of the F-ATPase complex. The sequences
analyzed from 11 aphid species varied between 588 to 609 bp
due to two small introns, and they had a constant exon region
of 474 bp. Regarding endosymbionts, 15 out of the 18
corresponded to partial sequences of the b-subunit (453 bp
each) of B. aphidicola, the primary endosymbiont. The other
3 correlated with the b-subunit (also 453 bp each) of secondary
endosymbionts. As reference taxa we chose the b-subunit of
Drosophila melanogasterfor the aphid sequences and
Escherichia coli, Vibrio alginolyticus and Burkholderia
(Pseudomonas) cepaciafor the endosymbionts. The accession
numbers were X86015, J01594, S47656, and X76877,
respectively. These four taxa were abbreviated Dme, Eco, Val
and Bce, respectively. Alignments of the sequences are not
shown but they are available upon request to the corresponding
author.
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Accelerated evolution in bacterial
endosymbionts of aphids

Summary When compared with free living bacteria, it is proposed that there are at
least two endosymbiotic processes in aphids based on the A + T content as well as
the increased evolutionary rate of the b-subunit of the F-ATPase complex in different
endosymbiotic bacteria. The first well established process corresponds to the
integration of Buchnera aphidicolamore than 150 million years ago. The other is
postulated to correspond to new endosymbiotic processes in which the bacteria
involved contain less A + T and show a lower increase of evolutionary rates when
compared with B. aphidicola. It is proposed, therefore, that endosymbioses are active
processes in aphid evolution.
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Table 1Classification of the 17 aphid species used in this study according
to Heie [10]

Family Subfamily Tribe Species

Thelaxidae Thelaxes suberi

Pemphigidae Pemphiginae Pemphigini Pemphigus 
bursarius

Pemphigus 
spirotecae

Eriosomatinae Eriosomatini Eriosoma 
lanuginosum

Fordinae Fordini Geoicasp.

Drepanosiphidae Phylaphidinae Phylaphidini Panaphis juglandis
Chaitophorinae Chaitophorini Chaitophorus 

leucomelas

Lachnidae Lachninae Lachnini Lachnus roboris
Tuberolachnus 
salignus

Cinarinae Cinarini Cinara pini

Aphididae Pterocommatinae PterocommatiniPterocoma 
populeum

Aphidinae Aphidini Aphis gossypii
Rhopalosiphum padi
Schizaphis 
graminum

Macrosiphini Macrosiphum rosae
Myzus persicae
Stabicobium 
latifoliae

Nucleotide composition

Table 3 shows the A + T content (%) of the b-subunit
corresponding to endosymbionts and free living bacteria. It
shows a substantial change towards a high A + T content,

especially at third base positions. Additionally, the secondary
endosymbionts had an intermediate A + T content. The
average number of amino acid changes with respect to E. coli
varied from 10 to 23, of which on average 65.8% increased
their A + T content, 21.1% decreased and 13.1% did not
change. On the other hand, the A + T content of the b-subunit
of aphids varied between 64.2% and 67.8% with an average
value of 65.9%, close to the average value for the b-subunit
of B. aphidicola. The average A + T contents when base
position is considered was also equivalent.

Relative rate tests

In order to estimate if endosymbionts have increased their
evolutionary rate when compared to free living bacteria, a relative
rate test has been applied to a triad of species [18]. Prior to the
application of the test it is necessary to estimate the number Kij
of nucleotide substitutions per site among sequences i and j. We
have applied Kimura’s two parameters method [12, data not
shown]. Fig. 1 shows the rationale of the test. As it can be
observed, there are two internal nodes or branching points denoted
as O’ and O. This method permits the estimation of the rate at
which species 1 and 2 have evolved since their divergence 
(i.e. K01 and K02). Finally, an evaluation of whether branches
leading to species 1 and 2 are statistically different  has been
realized [20]. Table 4 is a summary of the results obtained. As
can be observed by inspecting the first fifteen relative rate tests,
B. aphidicolaevolved between five to six times faster than E.
coli since its divergence. Moran et al. [16] and Moran [17] have
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Table 2Available partial sequences of the b-subunit from the F-ATPase complex

b-subunit

Aphid Buchnera SecondaryFamily Species*
aphidicola endosymbiont

Thelaxidae Thelaxes suberi(Tsu) X X
Pemphigus bursarius(Pbu) X
Pemphigus spirotecae(Psp) X
Eriosoma lanuginosum(Ela) X X
Geoicasp. (Geo) X

Drepanosiphidae Panaphis juglandis(Pju) X X
Chaitophorus leucomelas(Cle) X

Lachnidae Lachnus roboris(Lro) X X
Tuberolachnus salignus(Tsa) X
Cinara pini (Cpi) X

Aphididae Pterocoma populeum(Ppo) X X
Aphis gossypii(Ago) X X
Rhopalosiphum padi(Rpa) X X
Schizaphis graminum(Sgr)** X X
Macrosiphum rosae(Mro) X X X
Myzus persicae(Mpe) X X
Stabicobium latifoliae(Sla) X X

* The species abbreviation is indicated in parenthesis.
**The sequence has been obtained from Clark and Baumann [4].



reported similar results studying the genes trpEGand 16S rDNA
from Buchneraof different species. The difference was lower
but still significant when comparing secondary endosymbionts
and E. coli. Relative rate tests between primary and secondary
endosymbionts showed a higher and more significant
evolutionary rate of Buchnerathan secondary endosymbionts.

Finally, (data not shown) among primary endosymbionts some
evolutionary rates were higher than others, and there were no
significant differences among secondary endosymbionts. 

Do the non-Buchnera sequences really
correspond to new endosymbionts?

When compared to free living bacteria, both a high A + T content
and an accelerated evolutionary rate are two distinguishable
features of the integration process into the intracellular life of
other organisms, namely bacteria. Accordingly, the intermediate
A + T content as well as the evolutionary rates of the non-
Buchnerab-subunit sequences might be interpreted as active and
younger endosymbiotic processes involving other bacteria.
Throughout this text, we have considered these organisms as
secondary endosymbionts. Contrary to Buchnera aphidicola,
however, they do not constitute a monophyletic group, and based
on different phylogenetic analyses (manuscript in preparation)
we have no evidence of a single and new endosymbiotic process.
In fact, within this group of non-related secondary endosymbiotic
bacteria, the secondary endosymbiont from the aphid
Macrosiphum rosaehas both the highest A + T content and the
highest evolutionary rate when compared to E. coli. We consider
that this bacterium is in a more advanced stage of endosymbiotic
integration than the other two endosymbionts. Secondary
endosymbionts from a wider range of species are needed, however,
to test the hypothesis of single versus multiple new endosymbiotic
processes currently occurring in the evolution of aphids.
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Table 3A + T content (%) of the b-subunit in Buchnera aphidicolaof different aphid species, three secondary endosymbionts and two reference taxa

A + T content (%)

Endosymbiont Aphid species 1st base 2nd base 3rd base Total

B. aphidicola Tsu 52.3 61.0 84.1 65.8
Pbu 48.4 61.0 86.7 65.4
Psp 49.7 60.9 87.4 66.0
Ela 54.3 60.9 86.8 67.3
Geo 51.7 59.1 88.9 66.5
Pju 49.0 60.9 87.3 65.7
Lro 49.7 61.6 90.7 67.4
Tsa 49.7 59.6 94.0 67.8
Ppo 49.1 58.9 88.0 65.3
Ago 52.4 60.5 82.6 65.1
Rpa 47.7 61.0 84.2 64.2
Sgr 47.7 60.3 85.5 64.4
Mro 49.0 61.6 85.4 65.3
Mpe 49.1 61.0 86.1 65.3
Sla 50.3 60.0 91.4 67.2
Average 50.0 60.6 87.3 65.9

Secondary Cle 43.4 59.1 62.5 54.9
endosymbiont Cpi 41.7 60.3 55.6 52.6

Mro 45.7 59.6 64.0 56.4
Average 43.6 59.7 60.7 54.6

Outgroup Eco 38.4 59.6 39.1 45.7
Val 36.1 60.1 56.9 51.0
Average 37.2 59.8 48.0 48.3

1

2

3

0

0’

Fig. 1 Relative rate test. O’ and O are internal nodes and 1, 2, and 3 are the
corresponding species. Species 3 is taken as the reference taxon. See text for
explanation
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Table 4Relative rate tests to examine the evolutionary rate difference between primary and secondary endosymbionts (KO1) with respect to E. coli (KO2)

Aphid speciesa K12 K13 K12–K13 KO1 KO2 KO1/KO2*

Tsu 0.4154 0.4740 0.2763 0.3459 0.0695 4.98
Pbu 0.3900 0.4647 0.2670 0.3285 0.0615 5.34
Psp 0.3883 0.4784 0.2806 0.3345 0.0538 6.22
Ela 0.4524 0.5087 0.3110 0.3817 0.0707 5.40
Geo 0.4081 0.4756 0.2672 0.3377 0.0704 4.80
Pju 0.4446 0.5221 0.3244 0.3845 0.0601 6.40
Lro 0.3829 0.4773 0.2796 0.3313 0.0516 6.42
Tsa 0.3715 0.4802 0.2825 0.3270 0.0445 7.35
Ppo 0.3545 0.4722 0.2745 0.3145 0.0400 7.86
Ago 0.3741 0.4530 0.2446 0.3094 0.0647 4.78
Rpa 0.3566 0.4263 0.2286 0.2926 0.0640 4.57
Sgr 0.3546 0.4353 0.2376 0.2961 0.0585 5.06
Mro 0.3620 0.4422 0.2445 0.3033 0.0587 5.17
Mpe 0.3684 0.4553 0.2576 0.3130 0.0554 5.65
Sla 0.3924 0.4833 0.2855 0.3390 0.0534 6.35
Average 0.3877 0.4699 0.2708 0.3293 0.0585 –

Cle 0.2769 0.3266 0.0939 0.1854 0.0915 2.03
Cpi 0.2247 0.3148 0.0942 0.1595 0.0652 2.45
Mro 0.3140 0.3628 0.1422 0.2281 0.0859 2.66
Average 0.2719 0.3347 0.1101 0.1910 0.0809 –

a The first 15 relative tests were carried out using Escherichia coliand Burkholderia cepaciaas free living bacteria (K23 = 0.1977). The last three relative 
rate tests with secondary endosymbionts were realized using E. coliand Vibrio alginolyticusas free living bacteria (K23 = 0.2206). 
*P <0.05.


