Selection of very small differences in bacterial evolution Authors Fernando Baquero Department of Microbiology, Ramón y Cajal Hospital, National Institute of Health (INSALUD), Madrid, Spain Maria-Cristina Negri Department of Microbiology, Ramón y Cajal Hospital, National Institute of Health (INSALUD), Madrid, Spain María-Isabel Morosini Department of Microbiology, Ramón y Cajal Hospital, National Institute of Health (INSALUD), Madrid, Spain Jesús Blázquez Department of Microbiology, Ramón y Cajal Hospital, National Institute of Health (INSALUD), Madrid, Spain Keywords: experimental evolution, bacterial selection, antibiotic resistance, antibiotic concentration, bacterial environment Abstract As the Science of Biology is constantly undergoing change due to new discoveries and advanced techniques it is essential that a systematic study of the environmental causes of natural selection on microorganisms be conducted. Very small phenotypic differences among individuals within bacterial populations arise as a result of spontaneous genetic variation, but the evolutionary importance of these small changes is frequently considered to be non-significant. Recent in vitro experiments indicate that efficient selection of these very small differences may take place in environmental compartments where a particular intensity of the selective agent is exerted. Model studies based on competition between bacterial populations only differing in one or two amino acid changes of a detoxifying antibiotic enzyme (e. g. β-lactamase) have shown that at a narrow range of antibiotic concentrations the variant population is strongly selected over the original type, despite the extremely low phenotypic differences in antibiotic susceptibility. These selective concentrations are expected to occur in precise environmental compartments (selective compartments). Due to the high frequency of structured habitats in natural environments, the intensity of selective agents is commonly exerted along certain gradients. Each one of the points forming these gradients (or intersection among gradients) may have a particular selective ability for a specific genetic variant. Considering the environment as a composition of an extremely high number of specific selective compartments may help to understand the existence of high levels of genetic variability in natural bacterial populations. This may be one of the clues towards the unraveling of bacterial evolution. Downloads PDF Published 2010-03-17 Issue Vol. 1 No. 4 (1998) Section Review Articles License Submission of a manuscript to International Microbiology implies: that the work described has not been published before, including publication in the World Wide Web (except in the form of an Abstract or as part of a published lecture, review, or thesis); that it is not under consideration for publication elsewhere; that all the coauthors have agreed to its publication. The corresponding author signs for and accepts responsability for releasing this material and will act on behalf of any and all coauthors regarding the editorial review and publication process.If an article is accepted for publication in International Microbiology, the authors (or other copyright holder) must transfer to the journal the right–not exclusive–to reproduce and distribute the article including reprints, translations, photographic reproductions, microform, electronic form (offline, online) or any other reproductions of similar nature. Nevertheless, all article in International Microbiology will be available on the Internet to any reader at no cost. The journal allows users to freely download, copy, print, distribute, search, and link to the full text of any article, provided the authorship and source of the published article is cited. The copyright owner's consent does not include copying for new works, or resale. In these cases, the specific written permission of International Microbiology must first be obtained.Authors are requested to create a link to the published article on the journal's website. The link must be accompanied by the following text: "The original publication is available on LINK at <http://www.im.microbios.org>. Please use the appropiate URL for the article in LINK. Articles disseminated via LINK are indexed, abstracted, and referenced by many abstracting and information services, bibliographic networks, subscription agencies, library networks, and consortia.