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Unicellular but not asocial. 
Life in community of a bacterium
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Summary. All living organisms have acquired the outstanding ability to overcome the limitations imposed by changeable 
environments through the gain of genetic traits over years of evolution and the tendency of individuals to associate in commu-
nities. The complementation of a singular weakness, the deployment of reinforcement for the good of the community, the better 
use of resources, or effective defense against external aggression are advantages gained by this communal behavior. Communi-
cation has been the cohesive element prompting the global responses that promote efficiency in two features of any community: 
specialization in differentiated labor and the spatio-temporal organization of the environment. These principles illustrate that 
what we call human ecology also applies to the cellular world and is exemplified in eukaryotic organisms, where sophisticated 
cell-to-cell communication networks coordinate cell differentiation and the specialization of multiple tissues consisting of 
numerous cells embedded in a multifunctional extracellular matrix. This sophisticated molecular machinery appears, however, 
to be invented by the “simple” but still fascinating bacteria. What I will try to expand in the following sections are notions of how 
“single prokaryotic cells” organize a multicellular community. [Int Microbiol 19(2):81-90 (2016)]
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From “animalcules” to multicellular 
bacterial behavior

The first idea of the complexity of the microbial world 
should likely be attributed to Antonie van Leeuwenhoek 
(18th century), whose observations established an important 
principle in microbial ecology: the lives of microbes in 
multispecies communities embedded in a sort of regenerative 

shield [66], a description of what is now known as the 
multispecies biofilm that constitutes dental plaques [39]. 
It is now believed that any bacterial species is capable of 
organizing biofilms on any given surface, biotic or abiotic, 
and research has been devoted to understanding basic aspects 
of why bacterial cells decide to assemble these multicellular 
communities and how this process is accomplished.

Prof. Claude ZoBell was one of the first scientists who took 
an interest in this bacterial behavior, specifically in the bacteria 
that form “biofouling” on the submerged side of surfaces. In 
his description of this biofouling, “…our observations show 
that bacteria […] form a mucilaginous surface to which the 
fouling organisms adhere. It is entirely possible that bacterial 
film forms a protecting coating”, a fundamental concept 
of bacterial biofilms emerges: the cells are embedded in a 
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multifunctional extracellular matrix [98]. In his study on the 
relevance of surfaces to the metabolic activity of bacteria, 
ZoBell concluded that most marine bacterial species must 
live in association with solid surfaces as a result of the active 
attachment of bacterial cells [97]. While ZoBell and other 
authors began suggesting the presence of stalks from some 
adhered cells to the surfaces, how bacterial cells reach this 
level of organization and how they respond globally to certain 
environmental triggers remained to be discovered.

By the mid-20th century, diverse scientists were amazed by 
the fascinating intrinsic abilities of some organisms to produce 
light [36,53]. Among these scientists, Prof. Osamu Shimomura 
was awarded with the 2008 Nobel Prize in Chemistry for 
the discovery and further development of green fluorescent 
protein [80]. This phenomenon, called bioluminescence, also 
occurs in bacteria and was extensively investigated by Prof. 
J. Woodland Hastings [35]. Prof. Hastings and collaborators 
elegantly demonstrated that the spent medium of a Vibrio 
fischeri culture accumulated something they intuitively 
termed autoinducer, a molecule that triggers the production 
of bioluminescence. This observation established the basis for 
the further elucidation of the structure of the first bacterial 
cell-to-cell chemical communication molecule, N-(3-
oxohexanoyl)-3-aminodihydro-2(3H)-furanone [25,57]. 
Further investigation by Prof. Peter Greenberg and Prof. 
Bonnie Bassler, among others, proved that the accumulation 
of the autoinducer triggers a global response in the bacterial 
population, leading to antibiotic production, the expression 
of virulence factors or the formation of biofilms [58,76]. 
Continuing research in the field is taking us into a fascinating 
and unpredictable world of chemical communication 
networks among cells of the same species, different species 
and even members of other kingdoms [61,71,89,90].

The concepts introduced above, including bacterial 
communication, global population response and multicellular 
behavior, were connected to biofilms by the work of Prof. 
JW Costerton: “…in all aquatic systems with adequate 
concentration of nutrients, bacteria form glycocalyx-enclosed 
biofilms adherent to available surfaces and these sessile 
populations usually attain numerical and physiological 
predominance in medical, natural, and industrial aquatic 
ecosystems.” [23,33]. As in human communities, the transition 
of individual bacterial cells to multicellular communities is 
attainable due to the combination of the following factors: i) 
the existence of an inducible communication system ii) the 
specialization of individuals for different functions, and iii) 
their spatio-temporal organization through a multifunctional 
structure called the extracellular matrix.

Lessons in multicellularity from harm
less bacteria

The predicted complexity of microbial communities in 
nature has motivated the use of reductionist approaches to 
really understand the mechanisms of the developmental 
program that orchestrates the assembly of single-species 
biofilms. Pathogenic bacteria have received special attention, 
since their biofilms are involved in the contamination of 
medical devices, serving as a reservoir of pathogens that 
can cause future host infections. They are also involved 
in the contamination of instruments in the food industry 
and are difficult to eradicate due to their resilience to many 
antimicrobials [21,22,34,44,74,95]. Furthermore, studies 
of the soil-dwelling, non-pathogenic Bacillus subtilis have 
contributed enormously to our understanding of the basis 
of biofilm formation. At the cellular level, Bacillus forms 
spores that are extremely resistant to environmental offenses 
[17,54,84]. To form a spore, B. subtilis deploys an intricate 
machinery consisting of receptors, signals and genetic 
cascades to determine the moment when sporulation is 
initiated [28,43,88]. The sporulation developmental program 
and the multifaceted properties of the spores have definitively 
contributed to making B. subtilis a model in studies of gene 
regulation [3,86].

The complex communication network 
that coordinates cell differentiation

The joint work of the laboratories of Prof. Roberto Kolter 
and Prof. Richard Losick, among many other outstanding 
scientists, has contributed to our understanding of the 
developmental program that allows B. subtilis to form 
biofilms. In a chemically defined medium, B. subtilis 
assembles either colonies or pellicles with wrinkles as the most 
visible morphological feature, a simple but extremely effective 
experimental setup for the screening of genes dedicated to 
biofilm formation (Fig. 1A-B) [9,10]. Sporulation and biofilm 
formation are connected by Spo0A, a master regulator that 
is phosphorylated (Spo0A-P) following a cascade of signals. 
The intracellular levels of Spo0A determine the fate of the cell, 
which will become a biofilm producer at an intermediate level 
of Spo0A or sporulate if the level is high. Readers are highly 
encouraged to consult other reviews in which this topic is 
extensively treated [46,93]. 

The pheromone ComX, which reaches maximum levels 
during the stationary phase, triggers the development of 
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competence, allowing certain cells to take up DNA from their 
surroundings. ComX also allows the expression of the operon 
involved in the synthesis of surfactin, a fascinating molecule 
known for decades but with hidden features still waiting to 
be discovered. It is the amphiphilic structure of surfactin, a 
peptide ring fused to a fatty acid tail, that makes it a multivalent 
molecule in bacterial multicellular behavior: i) the reduction 
of water surface tension, a physical phenomenon closely 
linked to the flagella-dependent bacterial social movement 
called swarming, and ii) insertion in biological membranes, 
which can lead to cytoplasmic imbalance and cell death, thus 
providing protection against competitors [79]. This tendency 
to target membranes appears to be behind the role of surfactin 
as a self-produced trigger of biofilm formation in B. subtilis. 
Surfactin provokes a leakage of K+ in a certain subpopulation 
of cells, which is in turn sensed by the histidine kinase KinC, 
which then, through Spo0A, activates the expression of 
genes dedicated to the synthesis of the major components of 
the extracellular matrix: the adhesive protein TasA and the 
exopolysaccharide EPS [45,47]. In the end, the coordination 
of these and other signals and their corresponding genetic 
cascades orchestrates an effective response to a variety of 
signals and promote divergent cell fates and their coexistence 

within the same extracellular matrix [12,64,93]. Despite the 
universality of these genetic factors in the Bacillus genus, 
variations of this developmental program result in variable 
biofilm architectures. Indeed, bacteria closely related to B. 
subtilis develop visually different biofilms, suggesting the 
involvement of additional factors (Fig.1C) [49,56].
The integrity and functionality of multicellular organisms are 
achieved by the processes of cell differentiation and spatial 
organization of different cell types, and the same is true in 
bacterial communities [40]. A feature of Bacillus biofilms 
is the spongy appearance of the outermost layers, which, 
at the microscopic level, reveal the presence of structures 
reminiscent of the fruiting bodies of Myxococcus xanthus, 
where sporulation preferentially occurs [9,41]. The connection 
between cell differentiation and spatial localization was 
further expanded by Hera Vlamakis, Claudio Aguilar and 
their collaborators in their beautiful anatomical study of 
biofilms [92]. Using reporter cells for diverse cell fates, they 
demonstrated that motile cells occupied the bottom of the 
biofilms, sporulating cells were present in the outer layers, 
and the matrix producers were embedded in between. This 
arrangement is characteristic of the wild-type strain; however, 
a mutant disrupted in the assembly of the extracellular matrix, 
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Fig. 1. The experimental set up for the in vitro study of Bacillus biofilms. (A) The strain Bacillus subtilis subsp. subtilis NCIB 3610 forms pellicles in the biofilm-
inducing medium MSgg with no agitation at 30ºC. Left image: side view of the thickness of the pellicle. Right image: Top view of the pellicle with visible wrinkles. 
(B) These wrinkles are also morphological features characterizing B. subtilis colonies grown for at least 72 h in MSgg agar at 30ºC. C) Bacillus species closely 
related phylogenetically to Bacillus subtilis subsp. subtilis NCIB 3610 form morphologically different colonies in the biofilm-inducing medium MSgg agar. Bsp, 
Bacillus subtilis subsp. spizizenii; Bamp, Bacillus amyloliquefaciens subsp. plantarum; Bam, Bacillus amyloliquefaciens DSM7; Bli, Bacillus licheniformis.
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and thus lacking the morphological features of the biofilm, 
failed to achieve cell differentiation and spatial organization. 
These findings indicate the rele vance of the extracellular matrix 
in maintaining not only the structural integrity of the biofilm 
but also the regulation of the cell-to-cell communication 
network. What, then, is the extra cellular matrix made of?

The multifunctional extracellular matrix

The biofilm is a dynamic biostructure in which water, 
nutrients and hazardous compounds flow freely. To reach this 
goal, cells engineer the assembly of a tissue-like structure, 
the extracellular matrix [29,94]. The extracellular matrix is 
responsible for the final architecture of the biofilm: examining 
B. subtilis biofilms by electron microscopy reveals a system 
of channels delimited by masses of spatially organized cells 
(Fig. 2A-B), an architecture absent from mutants lacking this 
tissue-like structure [68,94]. Although not reported directly, 
this spatial organization of cells prompted by an extracellular 
matrix should be credited to Ferdinand Cohn. He and another 

two of the finest scholars in the field, Louis Pasteur and Robert 
Koch (Koch won the 1905 Nobel Prize in Physiology or 
Medicine), investigated B. anthracis, the etiological agent of 
a devastating disease called anthrax. In his work, Prof. Cohn 
described, with great precision, and without the help of potent 
electron microscopes (not yet available), all the cell types and 
morphologies of B. anthracis. Among them, we note tubular 
structures consisting of cells within a shield (Fig. 1 reproduces 
the original color plate in [1]), which, astonishingly, resembles 
the most recent electron microscopic observations of the 
channels of cells that characterize the biofilms of B. subtilis 
(Fig. 2B) [68]. 

The remarkable hydrophobicity of the extracellular matrix 
promotes the tight adhesion of the colony to surfaces and the 
enhanced resistance of cells encased in biofilms to antibiotics 
and other antimicrobials. These two attributes additionally 
contribute to the difficulty of eradicating biofilms [12,64]. 
In B. subtilis, at least two proteins, TasA and BslA, and an 
exopolysaccharide, are among the most relevant elements that 
define the chemical and biological features of the extracellular 
matrix (Fig. 2C) [8,10,62], although the involvement of 
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Fig. 2. The extracellular matrix is responsible for the final architecture of Bacillus subtilis biofilms.  (A) The colony morphology of B. subtilis changes with 
time and reaches maturity, characterized by visual wrinkles, after 72 h of growth in MSgg agar at 30ºC. B) The environmental electron micrograph of a 72-h-old 
B. subtilis biofilm reveals the cells and extracellular matrix to be gathered in a tissue-like structure that delimits channels in which nutrients, water, signals and 
gases flow freely. (C) Mutants in any of the main components of the B. subtilis extracellular matrix are defective in biofilm formation: (i) the TasA amyloid-like 
fibers (sipW encodes the signal peptidase that processes TapA and TasA; tapA encodes the auxiliary protein TapA; and tasA encodes the major component of 
the amyloid-like fibers); (ii) the hydrophobin protein BslA (bslA), which forms a hydrophobic coat; and (iii) an exopolysaccharide (eps operon). Bar equals 
20 μm in B.  
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additional molecules should not be excluded [12]. New studies 
on the extracellular matrices of diverse related bacterial 
species will contribute exponentially to our understanding of 
the functionality of each of these components.

The exoskeleton consisting of func
tional amyloids

Within a biofilm, cells of B. subtilis are interconnected by 
a network of long fibers consisting of TasA (Fig. 3). A deep 
analysis demonstrated that TasA possesses the intrinsic ability 
to polymerize to form of fibers that are morphologically and 
biochemically similar to amyloid proteins [69]. A similar 
protein called curli was previously reported in E. coli, and 
diverse studies have demonstrated the wide distribution of 
these proteins in the microbial world [7,16,20,26,30,32,50,
51,60,70,75,77,87,91]. Prof. Virchow was the first to use the 
term amyloid to refer to the corpora amylacea of the nervous 
system, based on the similar appearance of the plaques to 
starch after staining with iodine. Other authors, however, 
questioned Virchow’s observations and thus the hypothetical 
starchy nature of the plaques: “…It has been stated by Virchow 
that, by a dexterous adjustment of sulfuric acid and iodine, a 
blue tint may be given to the “amyloid” deposit, but, like many 
other observers, I have never succeeded in obtaining any color 
but reddish brown, merging into shades of dirty black. This 
color, due to the precipitation of the iodine by the acid, would 
probably never have been looked upon as blue except by a 
person whose impartiality of observation had been warped by 
a desire to connect the morbid change with the production of 
starch” [25]. After a long controversy regarding the chemical 
composition of amyloid plaques, it was demonstrated that 
amyloid fibers, as observed by electron microscopy, consisted 
of proteins. However, despite the rejection of the starchy 
hypothetical composition of the fibers, the pathological term 
amyloid has prevailed to the present [81,82]. 

Amyloid proteins do not share similarity at the amino-acid 
level, but all of them assemble into fibers enriched in β-sheets 
capable of binding the specific dyes Congo Red and thioflavin 
T, which resist proteolysis and detergent denaturalization 
[20,30]. In B. subtilis, the TasA amyloid-like fibers form a 
resistant network that spatially organizes the biofilm, but 
other amyloids hide cells from the host immune system, 
protect the cells from the environment or even scavenge 
toxic monomers, resulting in the term “functional amyloids” 
in an attempt to distinguish them from pathogenic amyloids 
[2,5,32,75,85]. Further studies have highlighted interesting 

differences between functional and pathogenic amyloids, 
such as the way they polymerize. In general, it can be said that 
amyloidogenesis in bacteria is the result of an efficient and 
highly regulated process that defines how and when the fibers 
are produced [75]. Beyond the intrinsic aggregative nature of 
amyloid proteins, additional factors assist the monomers in 
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Fig. 3. The extracellular matrix of Bacillus subtilis biofilms contains 
functional amyloids. Transmission electron micrographs of uranyl acetate-
contrasted samples show the tendency of TasA to form fibers. (A) Anti-TasA 
immunogold-labeled samples shows TasA fibers emerging from the surfaces 
of cells. (B) Double anti-TasA and anti-TapA immunogold-labeled B. subtilis 
biofilm samples reveal the presence of TasA (10 nm gold particles) and TapA 
(15 nm gold particles) in the TasA amyloid-like fibers. t, TasA fibers; f, flagella. 
(C) TasA protein purified to homogeneity from B. subtilis cells retains the 
ability to form fibers. Bars equal 500 nm in A and C, 100 nm in B.
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the development of fibers. In B. subtilis, the accessory protein 
TapA seems to play two roles: accelerating the polymerization 
of the TasA fibers and anchoring the growing fibers to the 
cell envelope [72,73]. These functions, however, are not 
universal among the Bacillus genus. Members of the B. cereus 
group possess three orthologs of TasA but lack orthologs of 
TapA. Furthermore, TasA in B. cereus is still functional and 
assembles into fibers that resemble the ones in B. subtilis. 
More interestingly, the genomic region dedicated to the 
synthesis of the fibers in B. cereus can be transferred to a B. 
subtilis mutant lacking any known amyloid-related proteins 
and still promotes the formation of fibers in the cell surfaces 
[13]. In addition to these proteins, it is thought that the 
hydrophobicity that characterizes the bacterial cell surfaces 
and the extracellular matrix also influences the polymerization 
of the fibers. This idea is based on the fact that aggregates of 
TasA purified from B. subtilis evolve to form fibers when 
deposited on hydrophobic surfaces but not on hydrophilic 
ones [15]. 

The highly hydrophobic members of 
the extracellular matrix

The exopolysaccharides, and especially the protein BslA, 
are responsible for the hydrophobicity of the extracellular 
matrix [37,42]. Exopolysaccharides (EPS) are polymers with 
hydrophobic or repellent features, two distinctive traits of 
the extracellular matrix [59]. EPS from different bacteria 
differ in their chemical composition, which defines their 
morphological and staining features as well as their biological 
relevance. Pseudomonas putida is known to possess up to 
four different gene clusters dedicated to the production of 
EPS [52]. In contrast, B. subtilis synthesizes at least one 
EPS, which is non-cellulosic given the failure of staining 
with Congo Red [69]. Rheological studies on Pseudomonas 
aeruginosa biofilms, which also contain more than one EPS, 
have shown the modulatory use of diverse exopolysaccharides 
as an efficient way for bacterial populations to modify and 
adapt to the changeable microenvironment[19]. In B. subtilis, 
the osmotic pressure gradients associated with the EPS appear 
to serve as a driving force to facilitate colony spreading [78]. 
BslA is a protein that forms a layer covering the entire biofilm 
of B. subtilis and thus contributes greatly, even more than 
the EPS, to the repellent nature of the extracellular matrix. 
BslA is similar in size to TasA but polymerizes in the form of 
regular, markedly hydrophobic aggregates, similarly to fungal 
hydrophobins [11]. TasA, EPSs, BlsA and other components 

yet to be found coordinately contribute to the construction 
of the extracellular matrix, the infrastructure that permits the 
assembly of this remarkable bacterial community.

From the laboratory to the field

The reductionist approaches have delved into the mechanisms 
of the sophisticated program by which bacteria form biofilms 
in the laboratory: external signals, receptors, genetic cascades 
and structural elements. All this knowledge can now be applied 
to the study of bacterial biofilms in more complex scenarios 
and how these factors integrate with many other external/
environmental signals that might interfere with the biofilm 
developmental program. As mentioned above, B. subtilis lives 
in association with plants, a compelling and useful niche for 
testing all our accumulated knowledge on biofilms.

Plants are truly fascinating living organisms that, 
due to their static lifestyle, have evolved the ability to handle 
and respond efficiently to the multitude of changeable abiotic 
(desiccation, light, UV radiation, drought) and biotic factors 
(animals, other plants, microbes), thus becoming able to 
colonize any environment found in the world [65]. Plants live 
in association with a large variety of microbes, some of them 
pathogenic and thus responsible for deleterious metabolic 
imbalances, and others beneficial that may contribute 
positively to the health of the plants [55]. B. subtilis is one of 
these beneficial microbes: it lacks any virulence factors, such 
as toxins, and contributes to plant health in a multifaceted 
way (Fig. 4A-B) [63]. To maintain this mutualistic interaction, 
B. subtilis and plants must use a mutually understandable 
language (Fig. 4C). Diverse organic acids and polysaccharides 
secreted by plant roots are sensed by Bacillus cells, which 
activate the formation of biofilms via the histidine kinase 
KinD. KinD is one of the receptors that triggers the 
phosphorelay leading to the formation of Spo0A-P, which 
ultimately activates the expression of the extracellular matrix-
related genes [4,18]. Reciprocally, Bacillus cells colonizing the 
roots produce surfactin, which contributes to this beneficial 
interaction in at least two roles. First, it prompts biofilm 
formation, probably via KinC, as demonstrated in vitro. In this 
way, Bacillus cells efficiently colonize the plant surfaces and 
secrete antimicrobials, which coordinately and locally repress 
the spread of pathogens [96]. Second, surfactin activates the 
immune system of the plants, which thus become better able 
to locally and systemically defeat pathogens in other parts of 
the plant. This process of “immunization” is called “priming” 
and is mediated by the activation of diverse plant hormone 
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Fig. 4. Biofilms in beneficial Bacillus-plant interactions. Diverse Bacillus species contribute to plant health in a multifaceted way. (A) Cell suspensions of 
beneficial Bacillus strains spread on melon leaves protect the plant against the fungal disease powdery mildew caused by Podosphaera fusca and the bacterial 
soft-rot disease caused by Pectobacterium carotovorum subsp. carotovorum. (B) Scanning electron micrograph of a bacterial biofilm on melon leaves 21 days 
after the application of the Bacillus cell suspension. A section of the biofilm shows multiple layers of cells connected by fibrillar material (arrows). (C) The 
beneficial Bacillus-plant interaction is the result of a complex chemical communication network. Aboveground, antimicrobials (e.g., iturins, fengycin) and 
surfactin, a trigger of biofilm formation self-produced by Bacillus cells, contribute to the efficient targeting of pathogens, to protection from other possible 
competitors and environmental conditions and also to long-term persistence. Belowground, the plants produce diverse organic acids or polysaccharides that 
trigger the formation of the Bacillus biofilm. In parallel, Bacillus cells produce surfactin, which reinforces the development of biofilms and also induces systemic 
resistance of the plant (ISR), providing protection against pathogens in the aerial part of the plant. Bar equals 5 μm in B. Figure 4(B) courtesy of Maria Luisa 
Antequera. 



Int. Microbiol. Vol. 19, 2016 ROMERO88

signaling pathways [14,24,31]. 
In addition to plants, there are other organisms might affect 

the fitness of Bacillus cells. All the knowledge accumulated 
over the years on single-species biofilms has prompted the 
study of multispecies biofilms. Recent research demonstrates 
that different Bacillus species share the same niche, and some 
molecules of one player can trigger the expression of the 
biofilm developing program in another, which could benefit 
the entire community [6]. This interaction, however, does 
not occur between Bacillus and Pseudomonas or between 
Bacillus and Streptomyces, which prefer to exclude each 
other, or at least do not cooperate in the formation of a mixed 
biofilm [38,67]. These examples of interspecies communication 
validate the sophisticated developmental programs studied in 
our laboratories and demonstrate the variability of outcomes 
depending on the repertoire of chemical signals and receptors 
implicated [48,83].

Bacterial cells have built a sophisticated platform consisting 
of signals, receptors, and structural components that are finely 
interconnected to respond efficiently to variations in the 
environment. One of the most fascinating adaptive responses 
is the arrangement into perfectly organized communities called 
biofilms. The chemical communication among bacterial cells 
promotes a global and therefore more efficient response, and 
macrostructures made of exopolysaccharides and proteins, 
among others, constitute the infrastructure that organizes the 
space. In this way, cells obtain a number of benefits: they are 
better protected from external aggression and can efficiently 
manage nutrient limitations or modify the environment. The 
research on microbial biofilms persuasively argues that bacterial 
cells may be unicellular but are definitively not asocial. 
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SEM Biennial Prize

The Spanish Society for Microbiology (SEM) Biennial Prize dates back to 1983, when the SEM decided that a lecture should 
be given by a young researcher at each SEM National Congress. The nominees are selected from among the SEM membership; 
they must be under 40 years of age, and carrying out research of excellence in a field of microbiology. The following researchers 
have been awarded the SEM Biennial Prize (the centers indicated are those where the scientists worked when they received the 
prize).
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