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Summary. Fifty four bacterial strains were isolated from root nodules of the grain legumes Cicer arietinum, Lens esculentus, 
Phaseolus vulgaris, Pisum sativum, and Vicia faba grown in cultivated lands of Beni-Suef Governorate (Egypt). Repetitive extra-
genic palindromic (REP)-polymerase chain reaction (PCR) clustered the strains into 15 REP-PCR groups. The nearly complete 
sequence of the 16S rRNA gene from a representative strain of each REP-PCR pattern showed that the strains were closely 
related to members of the family Rhizobiaceae of the Alphaproteobacteria. Pairwise alignments between globally aligned 
sequences indicated that the strains from V. faba had 99.6 % identity with Rhizobium leguminosarum, and those from P. vulgaris 
99.76 % and 100 % with sequences from R. leguminosarum and R. mesosinicum, respectively. Strains from P. sativum had 
99.76 %, 99.84 %, and 99.92 % sequence identity with R. leguminosarum, R. etli, and R. pisi, respectively, and those from L. escu­
lentus had 99.61 % identity with sequences from R. leguminosarum. Sequences of the strains from C. arietinum had 100 % 
identity with those of Mesorhizobium amorphae and M. robiniae, respectively. Nitrogenase activity, determined as acetylene-
dependent ethylene production, was detected in nodules formed after inoculation of the corresponding host plant with the 
representative rhizobial species. [Int Microbiol 2013; 16(3):157-163]

Keywords: Rhizobium · Mesorhizobium · legumes · 16S rRNA gene · phylogenetic trees

*Corresponding author: E.J. Bedmar
Department of Soil Microbiology and Symbiotic Systems
Estación Experimental del Zaidín, CSIC
Apartado Postal 419
18080 Granada, Spain
Tel. +34-958181600
E-mail: eulogio.bedmar@eez.csic.es

Introduction

Nitrogen is the most significant yield-limiting element in many 
agricultural production systems. External inputs of nitrogen to 
agriculture may come from mineral fertilizers, the production 
of which is heavily dependent on fossil fuels. Alternatively, 

nitrogen can be obtained from symbiotic nitrogen fixation by 
nodule-forming legume and non-legume associated rhizobial 
and actinorhizal bacteria, respectively [28].

Members of the Leguminosae (Fabaceae) comprise 17,000 
to 19,000 species and play an important ecological role, with 
representatives in nearly every terrestrial biome on Earth [17]. 
These plants are best characterized by their ability to establish 
N2-fixing symbiotic associations with Alphaproteobacteria of 
the genus Azorhizobium, Bradyrhizobium, Mesorhizobium, 
Rhizobium, and Ensifer [10,24,39], collectively referred to 
as rhizobia. Other non-rhizobial genera have been shown 
to nodulate legumes [4,23,29,35,37], which can also be 
nodulated by Betaproteobacteria, specifically, the genera 
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Burkholderia and Cupriavidus [3,5,8,11,19,30]. During the 
infection process, an exchange of molecular signals occurs 
between the two partners, leading to the formation of root 
nodules, where nitrogen fixation takes place [32]. Because of 
this ability, legumes can grow in arid, nitrogen-deficient soils, 
acting as pioneer plants for soil stabilization and colonization, 
enhancing their fertility, and, consequently, preventing 
erosion and desertification. Despite potential errors in accurate 
calculations of N2 fixation at global scales, an overall estimate 
of 50–70 Tg of biologically fixed N in agricultural systems 
has been estimated [13].

Since the use of rhizobia as a biofertilizer is a friendly 
environmental alternative to mineral fertilization, inoculation 
of legumes is a common agricultural practice, including 
in Egypt, especially in the country’s newly reclaimed 
soils [45,46]. Nearly 95 % of Egypt’s land surface can be 
categorized as arid and semi-arid. In these ecosystems, abiotic 
stresses, such as salinity or drought, limit legume cultivation 
and therefore crop production [45,46]. In Egypt, the grain 
legumes chickpea (C. arietinum), lentil (L. esculentus), 
common bean (P. vulgaris), pea (P. sativum), and broad bean 
(V. faba) are widely cultivated all along the Nile River for 
human consumption. In previous studies, R. etli and R. galli­
cum were isolated from root nodules of P. vulgaris plants 
growing in the Ismailia desert and the Ashmun area of the 
Nile Valley and Nile Delta [25]. Phylogenetic analyses based 
on partial sequencing of the 16S rRNA gene of 34 free-living 
rhizobial strains directly isolated from soils taken at the same 
locations identified 38.2 % of the strains as E. meliloti, 29.4 % 
as highly related to E. medicae, 23.5 % as Agrobacterium 
tumefaciens, and 8.8 % as taxonomically similar to R. etli 
[26]. Recently, the phenotypic characteristics and nodulation 
capacity of more than 50 rhizobial-like strains, isolated from 
the root nodules of lentils, common beans, peas, chickpeas, 
and broad beans, have been described [47]. Here we report 
on the identification of those strains on the basis of their 
16S rRNA gene phylogenies. Our data contribute to further 
characterizing endosymbiotic bacteria associated with Egyp
tian grain legumes.

Materials and methods

Isolation of bacteria from nodules and culture conditions. 
Nodules (10/plant) were collected from roots of agriculturally grown, healthy 
C. arietinum, L. esculentus, P. vulgaris, P. sativum, and V. faba plants near 
the towns of Tezmant and Beni-Suef (Beni-Suef Governorate, Middle 
Egypt) (20 plants/location), where they are agriculturally-grown. Nodules 
were surface-sterilized as indicated earlier [47], placed independently in 
Petri dishes, and crushed in a drop of sterile water with a sterile glass rod. 

The resulting suspension was streaked onto Petri dishes containing yeast 
extract-mannitol (YEM) medium [42] supplemented with 0.025 g Congo 
Red/l. After incubation of the plates at 30 ºC for 7 days, colony-forming 
units, which represented all of the colony types that could be distinguished by 
microscopic observation, were chosen. All rhizobial strains used in this study 
were routinely grown on YEM medium.

DNA extraction and PCR amplifications. For DNA extraction and 
PCR amplifications, genomic DNA was isolated from bacterial cells using 
the RealPure Genomic DNA extraction kit (Durviz, Spain), according to the 
manufacturer’s instructions. The quantity of DNA was determined using a 
Nanodrop spectrophotometer (NanoDrop ND1000, Thermo Fisher Scientific, 
USA). Repetitive extragenic palindromic (REP)-polymerase chain reactions 
(PCR) were performed using primers REPIR-I and REP2-I, according to de 
Bruijn [6]. PCR amplifications of 16S rRNA gene fragments were carried 
out using the two opposing primers 41f and 1488r as previously reported 
[12]. Amplification products were purified using the Qiagen PCR product 
purification system and subjected to cycle sequencing using the same primers 
as for PCR amplification, with ABI Prism dye chemistry. The products were 
analyzed with a 3130 × l automatic sequencer at the sequencing facilities 
of Estación Experimental del Zaidin, CSIC, Granada, Spain. The obtained 
sequences were compared to those in the GenBank database using the BLAST 
program [1] and with the sequences held in the EzTaxon-e server [15]. The 
sequences were aligned using Clustal W software [33]. The distances were 
calculated according to Kimura’s two-parameter model [16]. Phylogenetic 
trees were inferred based on the maximum likelihood (ML) method [9], using 
MEGA 5.0 software [31].

Plant nodulation tests and nitrogenase activity. Seeds of C. arie­
tinum, L. esculentus, P. vulgaris, P. sativum, and V. faba were surface-sterilized 
as above and allowed to germinate at 30 °C in the dark. Seedlings (1–4/pot) 
were planted in 1/2-kg pots containing sterile sand and vermiculite (1:1, v:v) and 
inoculated separately with each of the 15 strains. Uninoculated plants were used 
as a control for nodulation experiments. Plants were grown under natural daylight 
supplemented with artificial lighting, fed with N-free mineral solution [22], and 
harvested at 10 % flowering to check for nodule formation. Nitrogenase activity 
was determined as acetylene-dependent ethylene production, as described 
previously [47].

 
Accession numbers. Accession numbers of the nucleotide sequences of 
the rhizobial species used in this study are shown in the figure trees.

Results

REP-PCR and 16S rRNA gene phylogenetic analysis. 
Fifty-four bacterial strains, 12 from P. sativum, 11 each from 
C. arietinum and V. faba, and 10 each from L. esculentum and 
P. vulgaris, were isolated from extracts of nodules taken from 
healthy, agriculturally-grown plants in Beni-Suef Governorate 
(Egypt) [47]. 

The 54 isolates were represented by 15 different REP-
PCR patterns (Table 1). The nearly complete sequence of 
the 16S rRNA gene from a representative strain of each 
REP pattern revealed that all of the isolates were members 
of the family Rhizobiaceae of the Alphaproteobacteria, of 
which 12 belonged to the genus Rhizobium and three to the 
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Mesorhizobium group (Table 1). The ML phylogenetic tree 
(Fig. 1) and EzTaxon-e analysis (Table 2) inferred from the 
16S rRNA genes sequences indicated that strains BSPV2, 
BSPV7, BSPS4, BSVF2, BSVF5, BSVF9, BSLE4, and 
BSLE10 clustered with R. leguminosarum USDA 2370T, based 
on identity values > 99.6 %, and that strains BSPS7, BSPS10, 
and BSPV9 grouped with R. pisi DSM 30132T, R. etli CFN 
42T, and R. mesosinicum CCBAU 25010T, respectively, with 
identity values > 99.8 % in all cases. Strain BSCA1 clustered 
with M. amorphae ACCC 19665T, and strains BSCA8 and 
BSCA9 with M. robiniae CCNWYC 115T. These three strains 
had 100 % identity with the 16S rRNA gene sequences of 
their corresponding type strain. 

Plant nodulation tests. The 15 rhizobial strains 
identified in this study nodulated their original host plants. 
Nodules fixed N2, with nitrogenase activity values, determined 
as acetylene-dependent ethylene production, varying from 

51 nmol C2H2 plant-1 h-1 in C. arietinum nodulated by strain 
BSCA8 to 480 nmol C2H2 plant–1 h–1 in P. vulgaris inoculated 
with strain BSPV2.

Discussion

In this study, rhizobial bacteria from root nodules of the grain 
legumes C. arietinum, L. esculentus, P. vulgaris, P. sativum, 
and V. faba growing in cultivated lands of the Beni-Suef 
Governorate (Egypt) were identified. REP-PCR fingerprinting 
was used to group the strains. This technique has been 
extensively used to cluster bacteria at the subspecies or strain 
level [6,40] and is known to be a powerful tool for studies on 
microbial ecology and evolution [14].

Phaseolus vulgaris is a promiscuous legume able to form 
symbioses with several species of Rhizobium, including 
R. leguminosarum, R. etli, R. gallicum, R. giardinii, and 

Table 1. Phylogenetic classification of bacterial strains isolated in this study

Strainsa REP-PCR pattern Closest related genusb Family

BSPV1, BSPV2, BSPV3, BSPV4, BSPV5 I Rhizobium Rhizobiaceae

BSPV6, BSPV7 II Rhizobium Rhizobiaceae

BSPV9 III Rhizobium Rhizobiaceae

BSPV11, BSPV12 IV Rhizobium Rhizobiaceae

BSPS1, BSPS2, BSPS3, BSPS4, BSPS5, BSPS6 V Rhizobium Rhizobiaceae

BSPS7, BSPS8, BSPS9 VI Rhizobium Rhizobiaceae

BSPS10, BSPS11, BSPS12 VII Rhizobium Rhizobiaceae

BSCA1, BSCA2 VIII Mesorhizobium Rhizobiaceae

BSCA3, BSCA4, BSCA8, BSCA11 IX Mesorhizobium Rhizobiaceae

BSCA5, BSCA6, BSCA7, BSCA9, BSCA10 X Mesorhizobium Rhizobiaceae

BSVF1, BSVF2 XI Rhizobium Rhizobiaceae

BSVF3, BSVF4, BSVF5, BSVF6, BSVF7 XII Rhizobium Rhizobiaceae

BSVF8, BSVF9, BSVF10, BSVF11 XIII Rhizobium Rhizobiaceae

BSLE1, BSLE3, BSLE4, BSLE5, BSLE6, BSLE7, 
BSLE8

XIV Rhizobium Rhizobiaceae

BSLE9, BSLE10, BSLE11 XV Rhizobium Rhizobiaceae

aStrains named BS to indicate Beni-Suef Governorate, followed by the letters PV, PS, CA, VF, and LE, representing P. vulgaris, P. sativum, C. arietinum, 
V. faba, and L. esculentum, respectively. Strains shown in bold were chosen as the representative strains of each REP-PCR group.
bBased on the 16S rRNA gene.
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R. tropici [10,24]. We found that common beans were 
nodulated by R. leguminosarum as well as by R. lusitanum 
and R. mesosinicum (Table 2). Nodulation of P. vulgaris 
by R. leguminosarum [10, 24] and R. lusitanum [38] is well 
established. Our results extend those data with the finding that 
P. vulgaris can be nodulated by R. mesosinicum, a bacterium 

first isolated from root nodules of Albizia julibrissin [18]. 
These results, however, do not agree with those previously 
published, in which R. etli and R. gallicum were isolated from 
nodules of P. vulgaris growing in Egyptian soils [25]. The 
discrepancy may reflect differences in soil characteristics, 
since R. etli and R. gallicum were isolated from plants grown 
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Fig. 1. Maximum likelihood phylogenetic tree based on partial 16S rRNA gene sequences of strains from nodules of P. vulgaris, P. sativum, C. arietinum, V. faba, 
and L. esculentus and phylogenetically related species within the genera Rhizobium and Mesorhizobium. The significance of each branch is indicated by a 
bootstrap value calculated for 1000 subsets. Values lower than 70 are not shown. Bar, 1 substitution per 100 nucleotide position. The tree is rooted on Bosea 
thiooxidans DSM 9653.
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in desert areas [25] whereas R. leguminosarum, R. lusitanum, 
and R. mesosinicum were obtained from nodules of plants 
cultivated in agricultural, fertile areas.

Strains isolated from P. sativum were discriminated into 
three genotypes, R. leguminosraum, R. pisi, and R. etli (Table 
2). Pisum sativum was previously shown to be nodulated by 
R. leguminosarum and R. pisi [10, 25]. The latter species was 
originally isolated from nodules of pea plants and corresponds 
to a reclassification of strain R. leguminosarum DSM 30132 
[21]. To our knowledge, ours is the first report showing that R. etli 
produces effective nodules on roots of P. sativum.

Strains from C. arietinum were identified as M. amorphae 
and M. robiniae (Table 2). M. amorphae was isolated from 
Amorpha fruticosa plants grown in Chinese [43] and American 
soils [44], and M. robiniae is found in root nodules of Robinia 
pseudoacacia growing in China [48], but there were no 
reports that this rhizobial species nodulates C. arietinum.

The only species isolated from root nodules of V. faba 
was R. leguminosarum (Table 2), which is consistent with 
previous reports [10,24]. R. leguminosarum was shown to 

form nodules in faba bean plants from Ethiopia [2], France 
[7], Jordan [20], China [34], and Canada [41]. It was also 
the predominant rhizobial species isolated from nodules of 
agriculturally grown faba bean plants in Egypt [27].

Rhizobial strains isolated from L. esculentus grouped into 
two genotypes that were identified as R. leguminosarum (Table 
1). R. leguminosarum bv. viciae is the specific microsymbiont 
of the legumes of the tribe Vicieae, which comprises the 
genera Vicia, Pisum, Lens, and Lathyrus [10, 24]; accordingly, 
its isolation from Egyptian lentils is not surprising.

Because inoculation of legumes is a common practice in 
Egypt [45, 46], the identification, selection, and maintenance 
of superior rhizobial strains for each host plant are critical. 
Collectively, based on 16S rRNA gene sequences, our results 
show that Egyptian agriculturally grown members of the 
genus Lens as well as broad beans, peas, common beans, and 
chickpeas can be nodulated by different species of Rhizobium 
and Mesorhizobium. The recognition of this diversity is 
essential to improve our knowledge of endosymbiotic bacterial 
populations and thus to study the activities and applications 

Table 2. EzTaxon-e closest relative species of strains isolated in this study

Strains Original host Closest related type strains Similarity (%)

BSPV2 P. vulgaris R. leguminosarum USDA 2370 T 99.76

BSPV7 P. vulgaris R. leguminosarum USDA 2370 T 99.76

BSPS4 P. sativum R. leguminosarum USDA 2370 T 99.76

BSVF2 V. faba R. leguminosarum USDA 2370T 99.76

BSVF5 V. faba R. leguminosarum USDA 2370 T 99.76

BSVF9 V. faba R. leguminosarum USDA 2370 T 99.61

BSLE4 L. esculentus R. leguminosarum USDA 2370 T 99.61

BSLE10 L. esculentus R. leguminosarum USDA 2370 T 99.61

BSPV9 P. vulgaris R. lusitanum P1-7 T 100.00

BSPV11 P. vulgaris R. mesosinicum CCBAU 25010 T 99.84

BSPS7 P. sativum R. pisi DSM 30132 T 99.92

BSPS10 P. sativum R. etli CFN 42 T 99.84

BSCA1 C. arietinum M. amorphae ACCC 19665 T 100.00

BSCA8 C. arietinum M. robiniae CCNWYC 115 T 100.00

BSCA9 C. arietinum M. robiniae CCNWYC 115 T 100.00
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of rhizobial strains important in agriculture, environmental 
protection, and biotechnology. In this context, we isolated a 
number of rhizobial strains that could be assayed for increased 
productivity of agriculturally grown legumes in Egypt. The 15 
selected strains identified in this study are true symbionts of 
their corresponding host plant as, after nodule isolation, they 
were able to establish new and effective N2-fixing symbioses 
with them. Although the acetylene reduction technique cannot 
be used as a quantitative assay of N2 fixation [36], in this study 
it allowed us to determine whether the nodulated legume roots 
actively fixed N2 but not the effectiveness of each symbiotic 
association.
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