
1. Introduction

In statistics and data analysis, the geometrical concept of
distance between individuals or populations have been ap-
plied in fields such as anthropology, biology, genetics, psy-
chology, linguistics and others. The distance concept is a
useful tool in hypothesis testing and parameter estimation
between other applications. Also, in some statistical tech-
niques, such as correspondence analysis or multidimen-
sional scaling, the concept of distance is a basic tool. Dis-
tance functions are also fundamental in recent methods
such as the distance-based regression analysis, the dis-
tance-based discrimination analysis, and the related metric
scaling. C. M. Cuadras presented a survey about distances,
its properties and applications in [8].

These methods are valid for non-numerical explanatory vari-
ables as well as mixed variables, which frequently arise in appli-
cations (medicine, biometry, psychology, etc.), but few models,
have been used to overcome this situation. The purpose of the
distance-based (DB) methods, regression and discrimination,
is to properly handle problems with non-real value predictors,
including categorical or a mixture of real-valued and categori-
cal explanatory variables. Distance-based methods (DB) use a
metric d(·,·) defined on the set of predictors and all computa-
tions take the resulting distances between observations as the
departure point. The start-up ideas can be found in a paper of C.
M. Cuadras [9] and, as these methods are available for a mix-
ture of continuous and categorical variables, they are quite use-
ful for applications with real data. Several articles present data
for applications in the botanical and anthropological fields [2],
[3], [6]. As these methods are based on a metric d(·,·) it is obvi-
ous that the results depend on the selected metric. The first part
of the study for this approach considers the selection of the met-
ric and proves that when a suitable metric is taken, these meth-
ods reduce to classic regression or discrimination methods.
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For the representation of several groups, the related met-
ric scaling is also a useful technique. This method has been
applied to analyse chromosomal position ([5], [37]). This
technique obtains a joint representation of n objects when
two distances are available [26] and is an extension of clas-
sic metric scaling [7]. Another extensions is the continuous
scaling. This method obtains the principal dimensions of a
random variable [21].

We present a brief developmental history of these meth-
ods, the corresponding mathematical model with the main
properties, a few examples and comments about their inci-
dence.

2. Distance-Based Regression

2.1. A brief history
The first reference related to the DB-regression method was
a paper of C.M. Cuadras entitled Statistical Methods applied
to the prehistoric reconstruction [9]. This paper considered
the problem of the prediction of a continuous variable from
independent qualitative variables. For this situation, the limi-
tations of the classical linear regression model are known.
The usual way of proceeding would be to subject the quali-
tative variables to some scoring system (optimal scaling, for
example) and consider all the variables as quantitative. Oth-
er options are possible [46] but an optimum solution does
not exist. A methodology based on Principal Co-ordinate
Analysis was introduced in [9, 10]. These works introduce
the idea of constructing a similarity or a distance matrix from
the original data, to apply a principal Co-ordinate Analysis
and to consider a new model where the principal co-ordi-
nates play the role of explanatory variables. Then, a formula
for the prediction of a new observation was given. In order to
illustrate this possible regression model, it was applied to
the classical data of students given in [50]. From this initial
idea, Cuadras and Arenas [19] formally defined the DB-lin-
ear regression model. This paper considers the case of a
mixture of continuous and qualitative variables compared to
the classic linear regression. Selected properties were stud-
ied and real data were used to illustrate the model's utility.
As it is based on a Principal Co-ordinate Analysis, the num-
ber of new explanatory variables used may be too large,
therefore, a possible criteria to select only some of these
variables was proposed. In fact, the optimal selection of vari-
ables ([41], [49]) is still an open question and a coherent cri-
terion for the dimension reduction does not exist in the clas-
sical formulation of principal component regression ([43],
[57]). How to compute the coefficient of determination and
the prediction of a new observation was also developed in
[19]. Moreover, when the Euclidean distance is used the re-
lationship and compatibility of this method to the classical
linear regression model was proved. Additional properties
and examples can be found in [20]. In particular, it was
demonstrated that the DB model with the distance

,

is equivalent to the regression on orthogonal polynomials.
For dimension p>2, there are no theoretical results yet, but
the performance of the DB method with the distance

,

was shown with real examples.
These ideas were extended to the non-linear regression

case [29]. Namely, they introduced a coefficient in order to
choose the most predictive dimensions, providing a solution
to the problem of small variances and very large number of
observations. They also proposed a solution to the problem
of missing data and showed that the DB method can be re-
garded as a kind of ridge regression when the usual Euclid-
ean distance is used. Another solution for the missing data
case is proposed and justified with real data in [3]. In the ap-
plication of the DB-model special matrices arise, e.g., the 
n × n matrices A = (aij) where

aij = aji = min{i, j}, i= 1,..., n.

In Cuadras [11], the eigen-structure of these matrices was
conjectured:

«Given an eigenvector v of A the remaining eigenvectors
are obtained by permuting up to sign the components of
v».

But, at the moment, only empirical results confirm this con-
jecture, which is still an open problem. Fortiana and Cuadras
[38] proposed a parametric family of matrices, which in-
cludes the previous one, proved some theoretical results
and traced the way to solve this conjecture.

A generalised DB-regression model for a predictor and
response matrix respectively is described in [24]. Other in-
teresting properties and applications related to the regres-
sion problem can be found in [13], [14] and [38].

Ad hoc software was prepared to compute the DB-
method (linear or non-linear case). These programs formed
part of a Multivariate Package of non standard multivariate
methods [4].

2.2. The model
The DB-regression model, as it was defined in [19] for the
linear case, and in [29] for the non-linear case, is discussed
below.

First, let us consider the linear case and suppose that we
wish to relate a continuous variable Y to a variable vector W,
where W is a mixture of continuous, binary and categorical
variables. Consider a set of n individuals S = {1,2,..., n}, and
a distance function d(·,·), which depend on W, and gives a
n×n distance matrix D = (dij). We suppose that D is an Eu-
clidean distance matrix. Let A = (aij) the matrix with elements

and set B=HAH where H = In - 11´/n is the
centring matrix. It is well-known ([50]) that B is positive semi-
definite and assuming rank (B) =m, the spectral decomposi-
tion of matrix B is B = U.U´ = XX´, where . is diagonal and X
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= U.1/2 is an n × n matrix of rank m. As the distances be-
tween the rows of X are the same as dij, the following full DB-
model is proposed:

y = #0 1 + X# + e,

where 1 is the vector of 1's, #0 is an unknown scalar parame-
ter and # is an unknown parameter vector of dimension p,
and y is the vector of observations of Y.

As the number of columns X could be too large, a suitable
subset should be selected. Setting X = (X(k), Z), the k-dimen-
sional general linear model is suggested

y = "01 + X(k)"(k) + e(k).

Note that 1,X1,...Xk are eigenvectors of B with eigenvalues
0,/1,.../k respectively. Additional criteria for selecting or
deleting predictive columns of X can be found in [19].

The ordinary least squares estimates of "0 and "(k) are giv-
en by, , where .(k) = diag
(/1,...,/k). For computing the coefficient of determination a
useful formula is

,

where r (Y,Xi) is the simple correlation coefficient between Y
and the predictor variable Xi. Also, for a new individual 0, the
prediction Y(0) = yn+1, can be computed by

,

with

Details and proofs are presented in [19].
The DB-model is compatible with the classical regression

model, when the predictor variables are continuous and the
Euclidean distance is used. The equivalence also holds for
qualitative variables when a distance based on the matching
coefficient is used.

In the non-linear case, this DB model can be applied by
taking the distance

This choice provides principal co-ordinates which behave as
linear, quadratic, cubic, ..., dimensions. For p=1 and the
equidistant case, this method is equivalent to an ordinary re-
gression on k suitable Chebychev polynomials of the first kind
[20]. The non-equidistant case is also related to a set of or-
thogonal polynomials defined by a recurrence formula. The
case p>1 is unsolved, but several examples show a good
performance using this model.

2.3. Examples
Two examples are given in order to illustrate the utility of the
method covering the linear and non-linear case.

Example 1. Linear case
The data relates the automobile accident rate, in accidents
per million vehicle miles to 13 potential independent vari-
ables: 3 binary, 3 qualitative and 7 continuous [61]. The data
include 39 sections of major highways in Minnesota (USA) in
1973. In this case, in order to compare the classical regres-
sion method with the DB-method, we computed the coeffi-
cient of determination R2 and the value of the coefficient

,

where ^yi is the prediction obtained by leaving out the individ-
ual i from the original data (cross-validation method). We use
Gower's distance [39], which is a suitable distance measure
for mixed data.

The values obtained are reported in Table 1. Note that the
DB-method improves the classical one by using Gower's
distance.

Example 2. Non-linear case
Next we considered the data which reports a set of 38 mea-
sures on a chemical reaction ([35]). Y is the fraction of ori-
ginal material remaining after x1 minutes of reaction at x2

degrees Kelvin. The non-linear regression model is

where 'j, j = 1,2 are the parameters. In this case the results
are quite similar, although a better fit for the non-linear mod-
el shows that this model may be better. However, the DB-
method has been performed without knowing the function in
the non-linear regression model.

More examples are presented in [11], [19], [20] and [29].

2.4. The incidence of the method
The DB-method has been referenced in several works. For
instance:

• [1] in relation with a new methodology to construct a
tuned QSAR model.

• [40] in relation with MANOVA models, which are not
consonant with the MANOVA assumptions and in appli-
cations for economic data.

• [42] where the DB-method is used for short-term solar-
flare predictions.
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Table 1. Results of the classic regression model and DB-regression
method for the Example 1 Section 2.3, where R2 is the coefficient of
determination and C is the cross-validation coefficient.

R2 C

Classic method 0.755 2.501
DB-method 0.875 1.564
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• [53] in relation with predictive models based on tuned
molecular quantum similarity measurements and their
application to obtain quantitative structure-activity rela-
tionships.

• [54] in relation with molecular quantum similarity mea-
surements.

3. Distance-Based Discrimination

3.1. A brief history
The first paper about the DB discrimination method [10] gives
a solution to discrimination and classification using both con-
tinuous and categorical data, overcoming the classical and
arbitrary procedures of codification of non-continuous vari-
ables. It is well known that if all the variables are continuous
with normal distribution, the linear (LDF) and quadratic (QDF)
discrimination rules are the best. The former can be applied if
the hypothesis of equality of covariance matrices can be ac-
cepted. If the Mahalanobis distance is used, LDF and DB
rules give the same results. Moreover, if there are mixed vari-
ables, the location model [45] is a good rule, if the normality
assumption is verified for the continuous variables, however,
it requires a codification of the qualitative variables. As the DB
method does not suppose any probability distribution and
does not need a codification of the variables, it is very useful
for real data, e.g., in DNA sequences and assignation of man-
uscripts or voice ([59]). The utility of this method is shown in
[12] with some good examples. Results and properties about
the method can be found in [33] and [34]. Contributions to the
typicality in discrimination were developed in [25]. Examples
with real data can be found in [2], [3], [6] with applications to
botany and anthropology.

Ad hoc software was prepared computing the DB-dis-
crimination rule ([4]).

3.2. The model
Let X = (X1,..., Xp) be a random vector with values on some
space E1Rp and probability density f with respect to a suitable
measure /. Suppose that )(·,·) is a distance function on E, i.e.,
such that ) (x, y)= ) (y, x) 2 ) (x, x)=0,3x, y4E. Suppose that

is finite. V) (X), called geometric variability in [21], is the
measure of dispersion of X with respect to ), which reduces
to the total variation trace(5) when ) is the ordinary Euclid-
ean distance, 5 being the covariance matrix of X.

Given 00 4 6, the proximity function of the observation x0

= X(00) to the population represented by X is defined as

i.e., 7(x0) is the average of the squared distance from x0 to
the population minus the geometric variability.

If x1,..., xn is a sample from X, the sampling version of a
proximity function is

Thus 7(x0) can be estimated without knowing the density f.
For theoretical and practical aspects see [10], [12], [27],

[32], [33] and [34].
Suppose that we have samples of sizes n1,..., ng drawn

from g populations or groups 61,..., 6g and a distance func-
tion ) between observations. We can obtain the proximity
functions

where:
x is the observation of X on one individual 0 4618···86g,
)i(k) is the distance from x to the i-th observation of 6k,
)ij (k) is the distance between two observations i, j of 6k.
Now suppose that 0 is an individual to be allocated such

that x = X(0). The distance-based discriminant rule, or DB-
rule, is:

Allocate 0 to 6i if
^
7i (x) = min {

^
71(x),...,

^
7g(x)}.

In [33] it was proved that each 
^
7i (x) could be interpreted

as a squared distance from x to 6i. Thus the DB-rule assigns
an individual to the nearest group [34]. Further, it can be
shown that it is equivalent to the linear discriminant or the qua-
dratic discriminant rule when a distance like Mahalanobis is
considered. Furthermore, as it is based on a distance, it can
be applied to binary, qualitative, or mixed variables by using
a suitable distance function ([10], [12]). This DB-rule is under-
stood as a non-parametric discriminant rule in [47].

The results of the distance-based discriminant analysis
depend on the choice of distance ). In [51] it was proved that
Gower's distance ([39]) is a suitable distance for the treat-
ment of data with missing values. A complete discussion
about the use and advantages of this distance-based
method when dealing with missing values is discussed in [3].

3.3. Examples
An application to a problem in linguistics [55] was reported in
[12]: to decide whether a diphthong whose first vowel is an a-
tonic i, appearing after a consonant in Catalan, should be pro-
nounced as monosyllabic (91) or bisyllabic (92). Random sam-
ples of 136 and 43 words whose pronunciation is known, were
selected and each one was coded in five categorical vari-
ables. The leaving-one-out procedure yields 58 misclassifica-
tions for LDF, 38 for QDF and only 8 for the DB method where-
as the log-linear discrimination does not work for this data.

3.4. The incidence of the method
The DB-method has been referenced in various different
works. See for example [47] and [60], where a new algo-
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rithm for allocation of an individual to one of several popula-
tions is proposed. In [52] this method is mentioned in rela-
tion to the pattern recognition of the boundary shape of
closed figures.

4. Related Metric Scaling

4.1. A brief history
This method arises when two or more distances are available
and a joint representation of data is necessary [15], [26]. A
provoking problem is resolving the position of human chro-
mosomes. The first results were obtained in [37] and the
CACROMOS program, presented in [5], allows the computa-
tions. This technique obtains a joint representation of n ob-
jects when two distances are available [26], and has been
extended to more than two distances [15]. Recently a real
application of the method to human evolution was presented
in [6]. Finally a probabilistic extension of the method is pro-
posed in [22].

4.2. The model
Consider n individuals and two n × n distance matrices Dk =
(dij(k)), k = 1,2, and its corresponding n × n inner product matri-
ces Bk = (bij(k)), k=1,2, related to Dk by

Let Bk = Uk .kU´k be the spectral decomposition of Bk.
That is, Uk contains unitary eigenvectors and .k is diagonal
with the eigenvalues of Bk. Then the matrix with the principal
co-ordinates is , which satisfies  .
The problem is now to find an average matrix B summarising
the information contained in the matrices Bk, and then to find
X such that B = XX´. The average matrix B can be used to
obtain a final representation of the groups, which summaris-
es all the initial information. The proposed average matrix B
is:

where . The final representation of n indi-
viduals can be obtained by using the co-ordinates of the ma-
trix X such that B = XX´. This definition can be justified as fol-
lows.

Let D = (dij) the joint distance matrix related to B, i.e.,
or B = HAH (see above). It can easily be

proved that:
1) If D1 = D2 then also D = D1 = D2.
2) If then , where

Thus, the definition of D is consistent with equality and or-
thogonality. In general, we can have an intermediate situa-

tion between 1) and 2), so that D keeps the redundant infor-
mation between D1 and D2.

For two-dimensional representation, we take the matrix
X(2) with n rows and 2 columns which best fits X in the least
square sense. This matrix is , where U(2) and
.(2) contain the first two eigenvectors and eigenvalues of B
respectively. Definition of matrix B can also be justified by
some theoretical properties [15], [26].

4.3. Examples
Example 1. Anthropological data
A joint representation of ten ethnic groups was found in [6].
Working with 860 crania measurements from ten ethnic
groups: Yamana (Y), Alakaluf (Al), Ona (O), Eskimo (E),
Arikara (Ar), Santa Cruz (S.C.), Peruvians (P), Australians
(Au), Tasmanians (T) and Melanesians (M). With this data
we compared the ethnic groups Yamana, Ona, and
Alakaluf with the other Amerindian races to ascertain
whether there is a strong relation among them. This would
be an indicator of colonisation from North to South along
the American continent. As there is also the possibility that
these ethnic groups come from immigrations along the Pa-
cific, we have compared them with other groups from the
Austral continent and from the South Pacific. For the Ya-
mana, Alakaluf, and Ona samples, 65 variables were mea-
sured, however, there were a great number of missing val-
ues. For the other 7 populations, 45 biometrical traits were
measured with no missing values. The first group presents
two difficulties:

(1) a significant number of missing values and,
(2) the poor identification of ethnic origin and of the skulls.
Previously these skulls were completely identified using

the DB discrimination method [3].
The results of the related metric scaling (Figure 1) show

the real geographical situation of the groups and a clear dif-
ferentiation between the American and the Pacific groups.
Also, the Yamana and Alakaluf groups are closer to the other
American groups than the Ona group. On the other hand,
the Ona group does not seem to be related to the Aus-
tralians or Amerindians, as some theories suggest.
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Figure 1. Graphical representation for different ethnic groups using
the related metric scaling method. Yamana (Y), Alakaluf (Al), Ona
(O), Eskimo (E), Arikara (Ar), Santa Cruz (S.C.), Peruvians (P), Aus-
tralians (Au), Tasmanians (T) and Melanesians (M).
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Example 2. Statistical research data
The related metric scaling can be used [26] to represent
some aspects of statistical research in Spain. The data were
collected from The Extended CIS Database [58]. They con-
sidered two sources of data: the number of papers pub-
lished by 11 representative authors on 11 subjects (informa-
tion on individuals) and the number of authors that had
written joint papers (information on pairs of individuals). Two
distance matrices were defined from the data and the relat-
ed metric scaling provides a way of mixing these two types
of information taking into account possible redundancies.
Data and results are presented in [26].

5. Continuous Scaling

5.1. Introduction
Multidimensional Scaling is a multivariate analysis method to
obtain, for a given distance matrix * = ()ij), i, j 4 I, points Pi 4
Rp, such that the distances between points give
*,i.e.,d(Pi,Pj) = )ij,i,j,4I, where d(·,·) is the Euclidean distance
([7]). In ordinary applications, I is a finite set (nations, stimu-
lus, cars, etc.).

Suppose that I 1 R is a continuous set, e.g., an interval.
Suppose that there exists an embedding x:;(x)4 E, where
E is a real separable Hilbert space with quadratic norm ��·��
such that )(x, x´ ) = ��;(x) - ;(x´ )��, x,x´ 4 I. We may identify
;(x) with Q(x), where for x 4 I, Q(x) = (Q1(x),Q2(x),...) are the
Euclidean coordinates such that

.

To find ; and an optimal countable representation Q(x) of
;(x) for a given probability distribution, is the aim of continu-
ous scaling. The Euclidean embedding or method to finding
Euclidean coordinates from distances was first given by
[56].

5.2. Continuous Scaling on a random variable
This approach was used [20], [21] in studying the principal
dimension of a random variable X with range I=[a,b]. Also it
was proved that considering the symmetric covariance ker-
nel K(s,t) = min{F(s),F(t)} - F(s)F(t), the eigen- decomposi-
tion

,

where (/n,<n) are eigenvalues, eigen-functions of K, then

where and 

If Xt is the indicator of [X > t], i.e., if x is an observation of X,
then Xt = o for x = t and Xt = 1 for x > t. Then

where is the indicator of X´ and xt , x´t , are realisations of
. Thus Xt , t 4 I = [a,b] is a continuous configuration to

represent the distance ) (·,·) and H(x) = (h1(x),h2(x),...) is an
optimal discrete configuration to represent the same dis-
tance.

On the other hand, h1(x),h2(x),... can be interpreted as
principal components of Xt , as well as principal coordinates
of distance

.

Thus:
var(hn(X)) = /n , cov(hm(X),hn(X)) = 0 for m > n,

and the following expansion holds

.

5.3. Continuous Scaling expansions
The above expansion can be generalised. Let G(x,x´) be the
centralised inner product function for a distance )(x,x´), i.e.,

where X,X´ are independent and identically distributed. Let
us consider the eigen decomposition

where (/n,un) are eigenvalues, eigenfunctions of f1/2Gf1/2. De-
fine . Then

and cn(x), n 2 1, are uncorrelated and centered principal co-
ordinates for the distance )(x,x´). Thus we can obtain or-
thogonal expansions by writing

In particular, when
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we obtain the above continuous scaling solution by means
of hn (x) = cn(x) - cn(a).

As a consequence, the random variable X itself can be
expanded, e.g., as

a discrete version of the continuous expansion

.

In general, the following expansions hold:

This general approach was proposed in [21], [22], [27] and
it is proved that the geometric variability for ) (see Section
3.2) satisfies

and the above expansions exist provided that V) (X) is finite.

5.4. Some expansions
For the uniform, exponential, and logistic distributions some
expansions were found ([21], [28]) with principal dimensions:

1)
,

where X is uniform on [0,1] .

2)

where X is exponential with mean 1. Here ?n is the n-th
positive roof of J1 and J0,J1 are the Bessel functions of
the first order.

3)

where X is standard logistic with F(x) = (1+e-x)-1 and
Ln(x) is the Legendre polynomial on [0,1].

Further expansions were found for the Pareto [31], Laplace
and normal distributions (unpublished manuscripts).

5.4. The usefulness of the method
As it has been noted [20], the expansion of the Cramer-von
Mises statistics [36]

,

where Y1,Y2,... are independent N(0,1), is formally analo-
gous to the expansion

where

is a countable set of uncorrelated and identically distributed
random variables. This suggests that these expansions may
be used in goodness-of-fit assessment (notice that W 2 is the
limit distribution of Cramér-von Mises statistics, used in decid-
ing whether a sample comes from a specified distribution).

These expansions have been used [28] , [30], to distin-
guish the normal from the logistic distribution. Given a sam-
ple x1,x2,···, xn, they compared hk(xi),i = 1,···,n, for 1= k = 4, to
the principal dimensions hk(X), where X is logistic, and to
hk(Y), where Y is normal. The relative position of the sample
curve with respect to the theoretical one may help the user to
distinguish both distributions.

To test stochastic dependence between two random vari-
ables X,Y, ([44]) the functions (Lm(F(X)),Ln(G(Y))) were cor-
related, where Lm(x) is the Legendre polynomial on [0,1],
and F,G are the probability distributions functions of X and Y.
However ([18]), this test is appropriate for marginal logistic
distributions, but for other distributions (e.g., exponential),
this test can be improved by using the principal directions of
the marginal variables. Finally, a formula for the covariance
between functions is given,

where H is a bivariate distribution with marginals F, G [17]
and these expansions can also be used in extending the
probability plot, in constructing distributions with given mar-
ginals [16], [18], and in studying the asymptotic distribution
of Rao's quadratic entropy ([48]).
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