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Summary. In this paper we analyze the dynamics of two different models of oscil-
lators. The most relevant aspect of both models is that synchronization emerges 
spontaneously as a natural stationary state and therefore may be a starting point for 
understanding complex patterns where exact timing plays a relevant role. However, 
the physical mechanisms leading to this temporal coherence are quite different in 
the two models, evidence of the richness of dynamic behavior in real systems. We 
are still far from a complete understanding of the whole process. The effect of the 
topology on the dynamics, the effect of mobility, the effect of disorder, etc., are all 
very important in biological, physical, and social environments and are the current 
focus of research in the field. [Contrib Sci 11(2): 207-214 (2015)]
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Introduction

A 2012 issue of Scientific American (October 2012 for the 
English version, December 2012 for the Spanish Investigación 
y Ciencia) contained an inspiring paper entitled “How cells 
communicate?” The article analyzed recent experiments that 
used multi-recording devices to simultaneously record the 
activity of several neurons. The novel technology and clever 
setup allowed the authors to perform measurements with 
a previously unattainable accuracy and thus provided very 

useful information about how we learn from experience. The 
main message was that precise timing plays a crucial role in 
certain perception tasks. One example is the auditory system, 
in which the arrival of a signal in just a few milliseconds is 
enough to allow discrimination between right and left and to 
determine the origin of the sound’s source. To perform this 
task, cells (neurons) synchronize their activity via a remarkable 
process. The visual system is another illustrative example. 
Neurons capable of detecting features are distributed over 
different areas of the visual cortex. These neurons process 
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information from a restricted region of the visual field and 
then integrate it through a complex, dynamic process that 
allows the detection of objects, their separation from the 
background, the identification of their characteristics, etc. 
Together, these tasks give rise to cognition. Experiments 
performed in the primary visual cortex of cats showed 
that some stimuli induce a correlation between the firing 
patterns of simultaneously recorded neurons, suggesting 
that certain global properties of stimuli can be identified 
through correlations in the temporal firing of different 
neurons. These oscillatory patterns may reflect the 
organized, temporally structured activity often associated 
with synchronous firing.

This phenomenology is not restricted to information 
processing in the brain. Synchronization is observed in 
biological, chemical, physical, and social systems and it 
has attracted the interest of scientists for centuries [9]. 
A paradigmatic example is the synchronous flashing of 
the fireflies found in some South Asian forests. At night, 
myriads of fireflies hover over the bushes. Suddenly, several 
of them start emitting flashes of light. Initially, they do so 
without any coherence, but after a short period of time 
the whole swarm is flashing in unison, creating one of the 
most striking visual effects ever seen. Another spectacular 
example concerns a group of metronomes. The reader can 
take advantage of the resources of the World Wide Web 
to watch several videos displaying the effect. Mechanical 
metronomes (those typically used in music) are placed on a 
table, each one with a random initial condition so that the 
global beat is incoherent. After a short transitory period (a 
couple of minutes) they adjust their relative phases so that 
they become temporally closer and closer, finally reaching 
a dynamic state in which the orchestra beats in unison in 
perfect synchrony. These are a few of the many examples 
from well-studied systems, but there are plenty of others 
in which the synchronized activity among members of a 
given population is the result of an emergent cooperative 
process.

Several questions arise immediately. When we consider 
concepts such as timing or synchronization, what are we 
talking about? Is it possible to precisely define the concept 
synchronized state? What is the physical mechanism that 
gives rise to it? These questions are by no means trivial and 
significant research efforts have been devoted to answering 
them. Arthur Winfree was one of the first scientists to seek 
an answer to the first question. He combined concepts from 
biology and mathematics to construct a theoretical framework 
in which formal ideas could be converted to mathematical 

modeling. His book “The Geometry of Biological Time” [11] is 
a summary of his seminal work. Winfree showed that there 
are many different ways to entrain two or more physical or 
biological entities. Phase locking, frequency locking, partial 
synchronization, total synchronization, m:n entrainment, 
etc., are different dynamic states characterized by a coherent 
temporal behavior among members of a population. Thus, 
synchronization is one of the most well studied emergent 
properties of complex systems, and it has remained so in 
different areas.

The mechanisms leading to these remarkable dynamic 
states can be analyzed from a physical perspective. There 
are two fundamental issues that deserve special attention. 
The first concerns the units themselves. They are usually 
considered as oscillators, either autonomous (keeping a 
natural rhythm on their own, such as pacemakers do), or 
exogenous (in which the oscillatory patterns are triggered 
by external stimuli). The second concerns the interaction 
between units, i.e., the mechanism by which they exchange 
information, which depends on the nature of the system 
under study. For instance, metronomes synchronize 
through a physical or mechanical mechanism (vibrations 
and movement of the air column), brain neurons do so 
through a combination of chemical and physical elements 
(such as electric currents plus synaptic neurotransmitters), 
whereas fireflies use flashes of light and visual 
communication. But we can also analyze synchronization in 
a more general way. Scientists working in this field tend to 
classify synchronization in two different major categories: 
diffusive and pulse-coupled systems. In the first case, the 
interaction between members of a population is considered 
a continuous time function, while the second (which 
concerns typically excitable systems) is characterized 
by a non-continuous, non-linear, time function, which 
makes the problem much more difficult to tackle, at least 
from a theoretical point of view. In this paper, we analyze 
two models extensively studied in the last years, each 
representing one of the aforementioned categories, and 
look at the precise mechanisms leading to synchronization. 
Although the stable attractor of the dynamics is the same 
(the synchronized state), the way it is reached substantially 
differs between the two models, thus providing useful 
insights on how information is processed in real systems. 
The two models are introduced below.

The Kuramoto model is the typical paradigm and the 
most extensively studied example of phase oscillators. Given 
a population of oscillators, it can be shown that, under 
certain conditions that affect the intensity of the coupling, 
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the whole system can be treated as if only a globally limited 
cycle acts as an attractor of the dynamics. When this happens 
only one degree of freedom is needed to characterize the 
state of a given oscillator, its phase. Kuramoto [6] realized 
that just two elements are needed to obtain a non-trivial 
collective behavior. He assumed that every oscillator has a 
natural frequency, acquired from a random distribution; in 
the absence of coupling, each runs incoherently. In addition, 
he considered that the oscillators interact with each other 
through a non-linear function that depends on the phase 
difference between each pair. This type of coupling tends 
to synchronize the population. Therefore, in the complete 
model there is a tradeoff between two ingredients: if the 
distribution of frequencies is wide enough compared to 
the intensity of the coupling, there is no synchronization. In 
the opposite case, above a critical value of the coupling an 
emergent collective behavior arises and a fraction of the total 
population becomes synchronized (phase locked). A closer 
analysis of this model is presented later on.

The other system to be considered is an “integrate and 
fire” oscillator, which is a standard approach to excitable, 
pulse-coupled units. In the simplest description, it is assumed 
that a phase defined between [0,1] evolves in time with a 
constant velocity. When the phase reaches the upper value 

1j = , the unit fires, sending a signal to its neighbors, upon 
which it resets to 0j = . When a unit receives the pulse, it 
changes its inner state according to a so-called phase response 
curve. The particular shape of this function depends on the 
system under consideration (for instance, it is quite different 
in cardiac vs. liver cells). We examine the dynamic behavior 
of this system in the following sections, starting with just two 
units and then extending the calculation to a population of 
N oscillators.

Two oscillators

To understand the emergence of synchronization in a set 
of dynamic systems, we first consider the simplest case of 
two oscillators [5]. Let us start with the “integrate and fire” 
oscillator model using two units whose phase evolves at a 
constant speed (equal to 1, without loss of generality):

1,2 1
d

dt
j

=
 

The phase of each oscillator increases linearly in time until 
one of them reaches the threshold (assumed to be equal to 
1) at which point the oscillator “fires,” thus resetting its phase 
to 0 but sending a signal to the other oscillator that produces 
a sudden change in its phase (Fig. 1).

Schematically we can write the evolution of the phases of 
the oscillators as follows:

Initially, oscillator one has a phase equal to 1. After firing 
and resetting, followed by a driving, the phase of the second 
oscillator is equal to 1. This evolution allows us to identify a 
transformation:

1 ( )j j j→ − −∆  
We can then ask whether there exists a phase that 

represents a fixed point, i.e., a phase that is invariant after 
this transformation:

* 1– * – ( *)j j j= ∆  
Just two simple conditions are enough to ensure the 

Osc 1 1 → 0 → 1 – j – ∆(j)
firing driving

Osc 2 j → j + ∆(j) → 1
Co

nt
rib

 S
ciFig. 1. Phase evolution of the oscillator’s phase. When oscillator j 

fires at time tj the phase of oscillator i advances by an amount that 
depends on its own phase.
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existence and unicity of the fixed point of the transformation: 
(a) If ( )j∆ is bounded ( ( )j∆ ˂ 1) and the function is 
continuous, then the fixed point exists; (b) If the derivative 

'( )j∆ > 2−  for all values of the argument, then the fixed 
point is unique.

The existence of the fixed point is not sufficient to 
understand the collective behavior of the two oscillators. 
Instead, we must consider the stability of the fixed point; that 
is, rather than starting at the fixed point of the transformation, 
we start at a slightly different value, *j j δ= + . The behavior 
of this transformation is shown in Fig. 2. In the first case 
(positive derivative) the transformed phase is farther from 
the fixed point (on the opposite side) than the original phase. 
This means that the fixed point is unstable and acts as a 
repeller. On the other hand, after a half-cycle transformation, 
when the derivative is negative, the transformed phase is 
closer to the fixed point; hence the fixed point is an attractor.

Counterintuitively, the synchronization of the two 
oscillators lies in the fact that the fixed point is a repeller, 
such that after every transformation of the transformed 
phase is further and further from the fixed point, until it 
reaches the value 0 or 1 (from a periodic phase point of 
view, these two values are identical), in which case the two 
oscillators remain “synchronized” with exactly the same 
phase forever. However, if the fixed point was stable, after 

every transformation the phase becomes closer and closer 
to the fixed point, thus remaining out of phase with respect 
to the other oscillator.

In the synchronization of two pulse-coupled oscillators, 
the synchronization mechanism comes from the instability 
of the fixed point. This is, however, not always necessary; 
for instance, when the two oscillators are described by 
continuous equations in time, as happens in the Kuramoto 
model:

( ) sini
i j i

d K
dt
j

ω j j= + −
  

, 1, 2;i j j i= ≠
 

In this case there are two terms, the first corresponds 
to the natural frequency of every oscillator, and the second 
is the coupling term. When 0K = , the two oscillators are 
independent and will never synchronize. However, for 
increasing values of K  there is some amount of phase 
entrainment between the two units, as can be easily deduced.

We now introduce two auxiliary variables 
( )1 2 1 2 ,x yj j j j= − = + , for which the equations of 
motion are:

 
1 2  sindx K x

dt
ω ω= − −
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Fig. 2. Stability analysis of the fixed point.
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and from which we can conclude that when 1 2 | – |K ω ω< , 
the term on the right hand side is always positive or negative, 
meaning that x is an ever growing or ever decreasing function 
of time; therefore, the phases of the oscillators will tend to 
be apart. However, when 1 2| |K ω ω> −  a steady state is 
reached, such that:

( ) 1 1 2
1 2 sin ,

t K
ω ω

j j −

→∞

− − →  
 

meaning that the phase difference tends to a constant value 
in time, i.e., the two oscillators will become entrained (Fig. 3). 
It is worth noting that when considering synchronization two 
situations must be distinguished: (a) strong synchronization, 
when all units have identical phases and frequencies; (b) 

weak synchronization (also known as phase entrainment), 
when the frequencies are identical, but the phases keep a 
constant difference in time

Having understood this simple setting, let us now analyze 
a globally coupled system.

N oscillators with global coupling

We start by considering the original Kuramoto model [1,6], in 
which the phase of each oscillator evolves in time according to:

( )
1

 sin  
N

i
i j i

j

d K
dt N
j

ω j j
=

= + −∑
  

  

where iω  denotes the natural frequency picked up from a 
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Fig. 3. Phase evolution for two oscillators coupled according to the Kuramoto model, for different values of the coupling 
constant.

1 2

dy
dt

ω ω= +

1,...,i N=
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given probability distribution ( )g ω . In this model, because 
all the units are mutually interconnected, the factor /K N  
ensures a proper scaling behavior within the thermodynamic 
limit (large N ). The basic concepts introduced in the previous 
section are still valid: there is a relationship between K  and 
the frequency distribution that determines the appearance 
of a transition from an initially incoherent state to another, 
partially synchronized one. However, because finding this 
particular value is much more complicated, we need to resort 
to statistical mechanics, a discipline of physics able to deal 
with large populations.

The first step is to define an appropriate order parameter. 
Landau [7] proposed this approach to characterize phase 
transitions. It is known that symmetry breaking underlies a 
phase transition and the order parameter helps to identify 
when it occurs, since in one phase the order parameter is 
0 while in the other it takes a non-vanishing value. For the 
Kuramoto model, the order parameter takes the form:

 
where ( )r t with 0 < ( )r t < 1  measures the coherence of the 
oscillator population, and ( )tψ  is the average phase. With 
this definition, the dynamic equation becomes:

( )  sini
i i

d K r
dt
j

ω ψ j= + −
  

1,...,i N=

In the limit of infinitely many oscillators, they will be 
distributed with a probability density ( ), , tρ j ω , such that:

( ) ( ), ,i ire e t g d d
π

ψ j

π

ρ j ω ω j ω
+∞

− −∞

= ∫ ∫
An appropriate mathematical treatment of this probability 

density leads to:

 ( )
/2

2

/2

(cos ) sinr Kr g Kr d
π

π

j j j
−

= ∫
This equation always has the trivial solution 0r = , 

corresponding to incoherence, ( )1/ 2ρ π= , which means 
that the phase of the oscillators is uniformly distributed over 
the circle. However, it also has a second branch of solutions, 
corresponding to the partially synchronized phase and 
satisfying:

( )
/2

2

/2

1 (cos ) sinK g Kr d
π

π

j j j
−

= ∫
 

This branch bifurcates continuously from 0r = at the 
value cK K= , obtained by setting 0r = , which yields 

( )2 / 0cK gπ =   , where (0)g is simply the distribution of 
frequencies evaluated at 0 . Kuramoto was the first to devise 
this formula and the argument leading to it.

Regarding a population of N  “integrate and fire” 
oscillators, the analytical procedure to elucidate the 
attractor of the dynamics is quite involved, but the basic idea 
is simple, and, again, we can use the previous example of 
two oscillators. The key element is to realize that when two 
units fire simultaneously, they keep firing in unison forever. 
In mathematical terms, this is called an absorption, which 
technically is equivalent to considering that the number of 
independent oscillating units is reduced. It can be shown 
that the probability of finding two not-absorbed units when 
t →∞  tends to zero, confirming that the final attractor of 
the dynamics is the fully synchronized state [8].

New paradigms

In the previous sections, we focused on two special limits, one 
in which connectivity is minimal and the other in which it is 
maximal. The former is a good example of simple mathematics 
that can be solved exactly, helping us to understand the 
emergence of certain collective behaviors. The latter is 
complicated from a mathematical point of view, but the fact 
that all units are connected allows certain approximations. The 
first step to obtaining more realistic structures is to consider 
regular settings, for instance, rings in one dimension, planes 
in two dimensions, and, in general, hypercubic lattices in 
any dimension. In this case, the previous approximations 
are not valid and new theories are needed. From a purely 
phenomenological point of view, the main findings include 
the potential appearance of new structures. Synchronization 
is indeed possible under certain circumstances, but other 
phenomena, such as phase-locking (in which effective 
frequencies are identical but phases are not), emerge. For 
instance, in pulse-coupled oscillators, when the fixed points 
are repellers, synchronization emerges, as is the case in 
reduced and all-to-all connectivities; but if the fixed points are 
attractors, different local structures are possible.

Nature and society are similarly organized, forming 
structures that are far from regularly connected and thus 
unlike those described previously. This also affects how 
complex systems can become synchronized. In a recent review 
[2], we presented a detailed overview of the different aspects 
that complex topologies represent for synchronization. Here, 
we summarize the main implications for the emergence of 
synchronization.

1

1 j
N

ii

j

re e
N

jψ

=

= ∑
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The modern theory of complex networks is intimately 
intertwined with synchronization. In their seminal paper, 
published in 1998 [10], Watts and Strogatz introduced a 
simple model structure (the small world network). This 
structure was originally considered as a necessary ingredient 
in the problem of synchronization of cricket chirps, since 
they show a higher than expected degree of synchronization 
with the chirps of distant peers, as if they were “connected.” 
Unlike other models, the Watts and Strogatz model uses this 
as an initial setup and adds long-range random links between 
units, which makes the effective distances between units 
decrease substantially. This is but one of the many cases 
in science in which a proposed model makes a remarkable 
contribution to a field other than the one it was originally 
developed for.

In their paper, Watts and Strogatz noted a number 
of systems in which the connectivity patterns could be 
mapped using their model, showing, simultaneously, the 
effect of reducing the average distance between nodes 
(as they appear in random graphs) but also of keeping the 
local degree of clustering. And what is the effect of these 
new models of synchronization? Many researchers have 
turned their attention to the features of synchronization. 
Qualitatively, it can be stated that, indeed, the decrease 
in the average distance makes the units interact more 
strongly, thus enhancing synchronization. On the other 
hand, local irregularities prevent the emergence of certain 
heterogeneous structures.

The paper by Watts and Strogatz was followed shortly 
thereafter by a seminal paper on complex network science 
authored by Barabasi and Albert [4], which recognized that 
some real-world networks are even more “complex.” The 
newly recognized feature was that the distribution of degrees 

was not close to the classical one, and a clear power-law 
decay with no characteristic scales was demonstrated. The 
implication of these so-called scale-free networks was that 
there are many nodes with a small number of connections, 
but some of them are highly connected, forming hubs. In this 
case, the focus on synchronization was directed to the role 
played by the different types of nodes, classified according 
to their topological properties, such as the degree or the 
different types of centrality.

It is clear, however, that there must be an intrinsic 
relation between topological scales and the dynamic 
evolution of the synchronization process. We previously 
showed that a system composed of identical Kuramoto 
oscillators evolving from random initial conditions towards 
the only attractor, the synchronized state, produces phase 
correlations (which act as a kind of local-order parameter) 
that are the dynamic consequence of the topological 
distribution of the network [3].

Last, but not least, an additional degree of complexity 
arises for networks that, having their own dynamic rules, 
evolve with time. This time dependence can have different 
origins; one that is quite easy to understand corresponds to 
the motions of the units. Thus, when units move very fast 
synchronization is enhanced (Fig. 4), whereas when their 
motion is very slow, they also reach the final synchronized 
state, but over a much longer scale and with a different 
mechanism. For intermediate velocities, the compromise 
between the two mechanisms can produce undesirable (or 
desirable) consequences and disable synchronization. 

Competing interests. None declared.

Co
nt

rib
 S

ci

Fig. 4. The left to right movement over time of Kuramoto identical oscillators along a square. The colors correspond to phases in the interval [0,2π]. The Venn 
diagrams group oscillators that are already synchronized.
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