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Summary. The problem of periastron advance, which is the basis of one of the three 
classical tests of relaƟ vity theory, is revised with respect to both Newtonian mechanics 
and General RelaƟ vity and updated in the light of recent astronomical measurements of 
binary pulsars. We show that in Newtonian mechanics the addiƟ on of a correcƟ ve term 
to Newton’s law of gravitaƟ on, consistent with the principles of Newtonian mechanics, 
leads to the same formula of periastron advance as that used in General RelaƟ vity, 
which proves to be valid in all astronomical cases known, even in the cases of binary 
pulsars such as PSR B1913+16, PSR J1141-6545 and the so-called double pulsar PSR 
J0737-3039A and PSR J0737-3039B, which are considered as natural relaƟ vity laborato-
ries. Thus, among the relaƟ visƟ c phenomena, the periastron advance is one that can be 
also understood in Newtonian terms by means of an ad hoc assumpƟ on.
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Introduction

In the following, we review and update the problem of pe-
riastron advance in the light of recent astronomical mea-
surements, with the aim of providing a useful academic 
approach in the teaching of gravity. The advance of Mer-
cury’s perihelion, which cannot be predicted in Newtoni-
an mechanics by means of Newton’s law of gravitaƟ on, is 
one of the three classical tests of General RelaƟ vity 
[1,8,13,19,21,28].

At its origin, gravitaƟ on was envisaged as an aƩ racƟ ve 
force whose precise analyƟ cal formulaƟ on was subordina-
ted to astronomical measurements which, at the Ɵ me of 
Newton, led to the known dependence on the inverse of 
the distance squared. Newton himself was aware of the 

fact that formulaƟ ons other than this one would imply a 
perihelion shiŌ . The lack of evidence for that shiŌ  at that 
Ɵ me was thus taken as a proof of validaƟ on of the afore-
menƟ oned formulaƟ on [14–16].

Since the mid-19th century, as more accurate astrono-
mical measurements became available and the advance 
of Mercury’s perihelion was detected, several ad hoc pro-
posals were made in an aƩ empt to account for the ano-
malous perihelion shiŌ  of Mercury’s orbit. Two alternaƟ ve 
approaches were proposed: (1) modifying Newton’s law 
of gravitaƟ on and (2) explaining the phenomenon as a 
perturbaƟ on whose ingenious origin could be, among ot-
hers, the existence of a new planet, Vulcan, near the Sun; 
a hypotheƟ cal satellite of Mercury, solar oblateness, a ring 
of planets between the Sun and Mercury, or a parƟ cular 
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distribuƟ on of the maƩ er responsible for the zodiacal light 
[3,29]. This second alternaƟ ve proved to be unsuccessful 
because of its incompaƟ bility with other astronomical me-
asurements. At the beginning of the 20th century, General 
RelaƟ vity accounted for the anomalous advance of Mer-
cury’s perihelion in a natural way, without any ad hoc as-
sumpƟ on and without disturbing the agreement with ot-
her planetary observaƟ ons.

However, in the mid-20th century, the Brans-Dicke the-
ory of gravitaƟ on [2] appeared as an alternaƟ ve to Eins-
tein’s more popular theory of General RelaƟ vity. In the 
Brans-Dicke theory, the reciprocal of the gravitaƟ onal 
constant G is itself a scalar fi eld generated by maƩ er, 
which has the physical eff ect of changing G. The fi eld 
equaƟ ons contain the dimensionless constant  , called 
the Brans-Dicke coupling constant, which can be chosen 
to fi t observaƟ ons. Like General RelaƟ vity, the Brans-Dicke 
theory predicts Mercury’s perihelion advance. However, 
the value of   must be very large—at least several hun-
dred, an arƟ fi cial requirement in some views—for the 
Brans-Dicke theory to explain the results from observaƟ -
ons such as Mercury’s perihelion advance and the radio 
wave defl ecƟ on by the Sun. Eventually, the Brans-Dicke 
theory of gravitaƟ on lost relevance. 

The approximaƟ ons made in the context of General 
RelaƟ vity when calculaƟ ng the periastron advance lead to 
a formula that can also be obtained in Newtonian mecha-

nics, as will be shown, if a simple correcƟ ve term—consis-
tent with the principles of Newtonian mechanics—are 
added to Newton’s law of gravitaƟ on. The approximaƟ ons 
leading to this formula are acceptable not only in the case 
of Mercury and other planets of the Solar System, but 
also, as will be seen, in the case of all pulsars with a mea-
sured periastron advance. In parƟ cular, PSR B1913+16, 
PSR J1141-6545 and the so-called double pulsar PSR 
J0737-3039A and PSR J0737-3039B are considered as na-
tural relaƟ vity laboratories. 

Interaction forces in Newtonian
mechanics

In Newtonian mechanics, forces between two parƟ cles, A 
and B, are aƩ racƟ ons or repulsions of equal modulus and 
thus are parallel to AB. Their dependence upon posiƟ on 
and velocity in inerƟ al frames is restricted by space homo-
geneity and isotropy, by the uniformity of Ɵ me, and by 
Galileo’s principle of relaƟ vity. Accordingly, forces can only 
be a funcƟ on of the distance ρ between the two parƟ cles, 
Its Ɵ me derivaƟ ve   and the modulus of the component 
orthogonal to AB of the diff erence between their velociƟ -
es relaƟ ves to any inerƟ al frame of reference (Fig. 1). Ac-
tually this last dependence is not found in the usual forces 
formulated in Newtonian mechanics, which are a funcƟ on 
of just ρ and   . However, as will be demonstrated, its in-

Fig. 1. InteracƟ on forces in Newtonian mechanics. 
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troducƟ on in the formulaƟ on of gravitaƟ on—in Newtoni-
an mechanics the only true force between distant parƟ -
cles—allows a formulaƟ on that deals with the periastron 
advance. 

Relativity corrections to Newton’s law 
of gravitation

First-order relaƟ vity correcƟ ons are used to formulate the 
periastron advance per revoluƟ on. As a fi rst step, we con-
sider the case of a parƟ cle in a central gravitaƟ on fi eld. 
The results are then extended to the two-bodies problem.

Because Einstein’s fi eld equaƟ ons are prohibiƟ vely 
hard to solve for mulƟ -body systems like the Solar System, 
an alternaƟ ve approach to address the study of moƟ on in 
a gravitaƟ onal fi eld was developed: Eddington, Robertson, 
and Shiff  began to establish the “post-Newtonian” appro-
ximaƟ on of the General RelaƟ vity. Note, however, that, 
despite its name, “post-Newtonian” does not mean a mo-
difi ed Newton’s law of gravitaƟ on, but rather a simplifi ed 
Einstein’s gravity. 

The post-Newtonian formalism assumes a weak gravi-
taƟ onal fi eld and slow body moƟ on—compared with the 
speed of light—with both condiƟ ons being fulfi lled in the 
case of the Solar System. In this formalism, a set of param-
eterized correcƟ on terms are added to Newton’s law to 
account for relaƟ visƟ c eff ects. Nordtvedt introduced up to 
seven parameters, which became known as the “parame-
trized post-Newtonian (PPN) formalism” [17,18]. In par-
Ɵ cular, the PNN formula that eventually yield the perihe-
lion advance includes contribuƟ ons from the γ (the 
amount of space curvature produced by one unit of mass 
at rest) and β (the non-linearity in the law of gravitaƟ on) 
PNN parameters. Taking both parameters =1 (a condiƟ on 
needed to be consistent with Einstein’s equivalence prin-
ciple), the general relaƟ visƟ c formula for the perihelion 
advance is obtained.

Particle of infi nitesimal mass moving 
in a central gravitational fi eld 

According to General RelaƟ vity, the gravitaƟ onal fi eld in 
the two-body problem is described in terms of curved 
space-Ɵ me. The fi eld equaƟ ons that describe the space-
Ɵ me geometry are nonlinear and the Schwarzschild me-
tric is an exact soluƟ on to the Einstein fi eld equaƟ ons. 
Using the Schwarzschild coordinates, the moƟ on of a par-
Ɵ cle of infi nitesimal mass undergoing the aƩ racƟ on of a 

non-spinning free spherical mass of negligible diameter 
follows a path defi ned by the geodesics of the Schwarz-
schild metric [4]. In this fram, the periastron advance per 
revoluƟ on   is calculated from [5]:
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where c is the vacuum velocity of light, a is the semimajor 
orbital axis, e the eccentricity, and μ = MG (G = gravitaƟ o-
nal constant, M = mass creaƟ ng the fi eld).
If q « 1, the fi rst-order approximaƟ on of EquaƟ on (1) yields
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This formula can be obtained from Newtonian mechanics 
if a correcƟ ve term consistent with Newtonian mechanics 
principles is added to Newton’s law of gravitaƟ on.

A fi rst-order relaƟ vity correcƟ on to Keplerian orbits 
can be considered as a perturbaƟ on coming from several 
correcƟ ve terms added to Newton’s law of gravitaƟ on [6]. 
A set of terms describes an aƩ racƟ ve force, while a further 
term describes a force—unacceptable in Newtonian mec-
hanics—tangenƟ al to the orbit and directed towards the 
side of increasing radius. Their value per unit of mass is

 
 

  
    

   
  




2
2 2

2 2 2rad
1 2 r2v 2r

r c r 1 2 rc
F

, (4)
 

 


 



2 2 2tan

r v1
r c 1 2 rc

F                                                                        ,  (5)

where r is the distance to the fi eld center, r  is its Ɵ me 
derivaƟ ve, and v is the velocity. Coeffi  cients α, β, γ, δ, and 
λ are dimensionless.

As (2μ/rc2) «1, the denominator in the term of δ can be 
approximated as 1−(2μ/rc2) 1 and, consequently, EquaƟ -
on (4) can be wriƩ en as
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CorrecƟ ve terms Frad and Ftan lead to EquaƟ on (3) of the 
periastron advance provided that –α+2β+2λ = 3 [7], while 
parameters γ and δ can be taken arbitrarily. In Newtonian 
mechanics, as λ=0, condiƟ on –α+2β = 3 has to be verifi ed.

If α = –3 and β = 0, Frad reduces to

 
   12 2 2rad 6 q
r c r r

F                    (7)

while the reverse condiƟ on α=0 and β=3/2 leads, with 
γ=δ=1, to

                      (8)

where ν is the modulus of the velocity component ortho-
gonal to the radius.

Any linear combinaƟ on of correcƟ ve terms defi ned by 
EquaƟ ons (7) and (8), with coeffi  cients ε1 and ε2 verifying 
ε1 + ε2 = 1, defi nes a correcƟ ve force leading to the same 
periastron advance as that predicted by relaƟ vity mecha-
nics by means of EquaƟ on (3) [22]. Certain sets of coeffi  ci-
ents ε1, ε2 may be preferable if aƩ enƟ on is paid to other 
phenomena.

As the correcƟ ve terms defi ned by EquaƟ ons (7) and 
(8) have been obtained from perturbaƟ on theory, they 
must be small compared to the value  2r  which they cor-
rect:

                           ;   
                               

 (9)

Extension to the two-bodies problem 

So far, a parƟ cle of infi nitesimal mass moving in a central 
gravitaƟ on fi eld has been considered, but an extension to 
the two-bodies problem can be done provided that, for 
two parƟ cles P1 and P2 with mass m1 and m2 respecƟ vely, 
the following values are used in EquaƟ ons (3), (7), and (8):

μ = G(m1 + m2); a = semi-major axis of the relaƟ ve ellipse   (10)
or
μ = Gm2; a=ai                        (11)

where ai is the semi-major axis of the ellipƟ c orbit follo-
wed by Pi  focusing on the system center of mass.

The case of planets of the Solar System

The maximum value of q [EquaƟ on (2)] and those of q1 and 
q2 [EquaƟ on (9)], which must be «1 in order for the appro-
ximaƟ ons leading to EquaƟ on (3) in General RelaƟ vity to 
be acceptable, are shown in Table 1 for each planet of the 
Solar System. 

As all q, q1 and q2 values are «1, the perihelion advance 
as calculated in General RelaƟ vity is the same as in Newto-
nian mechanics with the correcƟ ve term added to New-
ton’s law of gravitaƟ on.

The case of binary pulsars

GravitaƟ onal forces much stronger than those acƟ ng in 
the Solar System can be found in binary systems, and hen-
ce the usual approximaƟ on made to calculate the perias-
tron advance are quesƟ onable. Among binary systems, 
those with a pulsar are beƩ er known because the pulsar 
greatly helps in the measurement of system parameters. 

The PSR B1913+16 pulsar, illustrated in Fig. 2, was the 
fi rst discovered pulsar belonging to a binary system. Its 
discovery by Hulse and Taylor [12] in 1974 in Arecibo gran-
ted them the Nobel Prize of Physics in 1993. 

With its well-known parameters [9–11,25–27], it has 
been considered a natural laboratory of relaƟ visƟ c experi-
mentaƟ on because of the high gravitaƟ onal aƩ racƟ on 
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Table 1. Maximum values of q, q1, and q2 for planets of the Solar System

Planet qmax 109 q1 max 109 q2 max 109

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptune
Pluto

170.0
 82.0
 59.0
 40.0
 12.0
  6.3
  3.1
  2.0
  1.7

190.0
 82.0
 60.0
 43.0
 12.0
  6.6
  3.2
  2.0
  2.0

73.0
40.0
 6.1
19.0
 5.6
 3.1
 1.5

 0.98
 0.6

 �21 c r
q 6 1<< 1

  �2

2

2c
q 3 1<< 1
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between it and its companion star. The mass of the pulsar is 
about one solar mass and its radius is around 10 km. Its com-
panion star is of similar mass and radius. Their orbital period 
is around 8 h. Table 2 summarizes the principal parameters 
of the pulsar, among which the high value of the periastron 
advance. The last three parameters of Table 2 were obtained 
from the former parameters [11,25] by applying, among ot-
hers, EquaƟ on (3) of the periastron advance—as applied to 
the two-bodies problem [EquaƟ on (11)]. 

The use of EquaƟ on (3) in this case is permissible be-
cause of the small value of q  3,6·10–5. In this case,  q1  
1,8 ·10–5 and q2  5,6·10–6 are also «1, and so the Newtoni-
an approach to EquaƟ on (3) is also permiƩ ed. 

Recently, data concerning other binary pulsars have 
been published [11]. Those with periastron advance > 1°/
year are collected in Table 3. The so-called double pulsar 
(PSR J0737-3039 A and PSR J0737-3039 B), is the current 
best laboratory for relaƟ visƟ c gravitaƟ on, both for conser-
vaƟ ve eff ects (like the periastron advance) and dissipaƟ ve 
eff ects (gravitaƟ on-wave emission). Pulsar J11411-6545, 
discovered in 1999, is another convenient laboratory for 
General RelaƟ vity due to its short orbital period (0.2 side-
ral days) and large eccentricity (0.17) compared to other 
compact binary systems made of a neutron star and a whi-
te dwarf. 

In all cases, the published parameters lead to maxi-
mum values of q, q1 and q2 (Table 4), which are small 
enough, compared to unity, to allow the use of EquaƟ on 
(3) in both General RelaƟ vity and Newtonian mechanics 
with the corrected law of gravitaƟ on. 

From the structure of binary pulsars one can expect 
that this will always be the case.

Other causes infl uencing the perias-
tron advance

In previous secƟ ons, heavenly bodies were treated as par-
Ɵ cles. However their fi nite dimension as well as their spin-
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Fig. 2. IllustraƟ on of binary pulsar PSR B1913+16.

Table 2. Pulsar PSR B1913+16 parameters [10,22]

Projected semi-major axis a1sini = 2.324 ± 0.0007 light s

Eccentricity                              e = 0.617155 ± 0.000007

Binary orbit period P = 27906.98172 ± 0.00005 s

Rate of periastron advance 4.226 ± 0.002 deg yr–1

Transverse Doppler
 and gravitaƟ on redshiŌ 

γ = 0.0047 ± 0.0007 s

Sine of inclinaƟ on angle sini = 0.81 ± 0.16

Mass of the system M = 2.83 Msol (Msol = solar mass)

Pulsar mass Mp = 1.39 ± 0.15 Msol
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ning movement may infl uence the periastron advance. In 
General RelaƟ vity, Synge [24] studied the orbit of a parƟ -
cle in a fi eld created by a moƟ onless sphere with mass 
distribuƟ on showing spherical symmetry, and Rayner [20] 
extended Synge’s results to the case of a central mass 
with uniform spinning movement.

These studies lead to terms 1 '  and  2 " addiƟ ve to the 
periastron advance   given by EquaƟ on (3) [23]

     (12a)
 

     (12b)

where r0 is the radius of the sphere, Ω its angular velocity, 
and  the angle between the rotaƟ onal axis and the direc-
Ɵ on orthogonal to the orbit plane.

For the case of the planets of the Solar System, both 
correcƟ ve terms can be neglected when compared to the 
value of  .

For binary pulsars associated with a neutron star, the 
assumpƟ on of negligible diameter can be easily accepted 

Table 3. Other pulsars with high  . a90% confi dence upper companion mass limit

Pulsar A1 sin(i) (lt −1 ) Eccentricity θ’ (deg yr−1 ) Binary Period (days) Mtot
(Msol)

M2
(Msol)

U p r M a s s a 
(Msol)

J0737-3039A 1.415032 0.0877775 16.89947 0.10225156248 2.58708 1.2489

±1.0 10−06 ±9.0 10−07 ±6.8 10−04 ±5.0 10−11 ±1.6 10−04 ±7.0 10−04

J0737-3039B 1.5161 0.0877775 16.89947 0.10225156248 2.58708 1.3382

±1.6 10−03 ±9.0 10−07 ±6.8 10−04 ±5.0 10−11 ±1.6 10−04 ±7.0 10−04

J1141-6545 1.858922 0.171884 5.3096 0.1976509593 2.2892 1.02

±6.0 10−06 ±2.0 10−06 ±4.0 10−04 ±1.0 10−10 ±3.0 10−04 ±1.0 10−02

B1534+12 3.7294626 0.2736767 1.755805 0.420737299153 1.35

±8.0 10−07 ±1.0 10−07 ±3.0 10−06 ±4.0 10−12 ±8.0 10−02

J1756-2251 2.7564 0.180567 2.585 0.319633898 4.442

±2.0 10−04 ±2.0 10−06 ±2.0 10−03 ±2.0 10−09

J1906+0746 1.420198 0.085303 7.57 0.165993045 2.867

±2.0 10−06 ±2.0 10−06 ±3.0 10−02 ±8.0 10−09

B2127+11C 2.51845 0.681395 4.4644 0.33528204828 3.486

±6.0 10−05 ±2.0 10−06 ±1.0 10−04 ±5.0 10−11

 

Table 4. Maximum values of q, q1, q2  
a Maximum values of the other correcƟ ve terms that are not considered

Pulsar q (x104) q1 (x105) q2 (x106) (v/c)2 (x106) a 

J0737-3039A 0.27 2.61 3.04 1.01

J0737-3039B 1.27 2.61 3.48 1.16

J1141-6545 0.18 1.62 1.40 0.47

B1534+12 0.13 1.07 1.25 0.42

J1756-2251 0.52 4.76 1.18 0.39

J1906+0746 0.62 5.97 1.16 0.39

B1913+16 0.35 1.82 0.83 0.28

B2127+11C 0.94 4.09 0.90 0.30
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because of the small size of this kind of star. Actually, it is 
known in General RelaƟ vity that the eff ect of the structure 
of the bodies becomes evident at the fi Ō h post-Newtoni-
an order, which makes it almost impossible to disƟ nguish 
with both Solar System and pulsar observaƟ ons.

Conclusions

The value of the periastron advance predicted by General 
RelaƟ vity in all known cases, even those regarded as natu-
ral laboratories of relaƟ vity (binary pulsars and the so ca-
lled double pulsar) can also be predicted by Newtonian 
mechanics if a correcƟ ve term consistent with its princi-
ples is added to Newton’s law of gravitaƟ on. This term can 
reduce to the simple form defi ned in EquaƟ ons (7) and (8) 
or be any linear form of them, with coeffi  cients ε1 and ε2 
verifying ε1+ε2 = 1.

Newton himself was aware of the fact that formulaƟ -
ons other than his law of gravitaƟ on would imply a perihe-
lion shiŌ . But during his Ɵ me neither the advance of Mer-
cury’s perihelion nor binary pulsars had been detected. 
Thus, among the relaƟ visƟ c phenomena, the periastron 
advance is one that can be also understood in Newtonian 
terms by means of the addiƟ on of a correcƟ ve term to 
Newton’s law of gravitaƟ ons, consistent with Newtonian 
principles of mechanics.
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***

Resum. El problema de l’avanç del periastre, que ha basat una de les tres proves clàssiques 
de la teoria de la relaƟ vitat, és revisat des de les dues formulacions de la mecànica: la newto-
niana i la relaƟ vitat general, i és actualitzat a la llum dels recents amidaments astronòmics en 
púlsars binaris. Es mostra que en la mecànica newtoniana l’addició d’un terme correcƟ u a la 
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llei de gravitació de Newton, consistent amb els principis de la mecànica newtoniana, con-
dueix a la mateixa fórmula per a l’avanç del periastre que l’emprada en relaƟ vitat general, 
que resulta vàlida en tots els casos astronòmics coneguts, fi ns i tot en el cas dels púlsars 
binaris tals com els PSR B1913+16 i PSR J1141-6545, i l’anomenat púlsar doble PSR J0737-
3039A i PSR J0737-3039B, considerats com a laboratoris naturals de relaƟ vitat. Així doncs, 
entre els fenòmens relaƟ vistes, l’avanç del periastre n’és un que pot ser interpretat consis-
tentment en termes newtonians per mitjà d’una suposició ad hoc.

Paraules clau: periastre · periheli · gravitació · púlsar · mecànica newtoniana


