Comparative microbial ecology of the water column of an extreme acidic pit lake, Nuestra Señora del Carmen, and the Río Tinto basin (Iberian Pyrite Belt)

Elena González-Toril1*, Esther Santofimia2, Enrique López-Pamo2, Antonio García-Moyano3, Ángeles Aguilera1, Ricardo Amils1,4

1Center for Astrobiology (INTA-CSIC), Torrejón de Ardoz, Spain. 2Geological Survey of Spain, Madrid, Spain. 3Institute of Biology, University of Bergen, Bergen, Norway. 4Center for Molecular Biology Severo Ochoa, Autonomous University of Madrid-CSIC, Cantoblanco, Spain

Received 10 September 2014 · 15 December 2014

Summary. The Iberian Pyrite Belt, located in Southwestern Spain, represents one of the world’s largest accumulations of mine wastes and acid mine drainages. This study reports the comparative microbial ecology of the water column of Nuestra Señora del Carmen acid pit lake with the extreme acidic Río Tinto basin. The canonical correspondence analysis identified members of the *Leptospirillum*, *Acidiphilium*, *Metallibacterium*, *Acidithiobacillus*, *Ferrimicrobium* and *Acidisphaera* genera as the most representative microorganisms of both ecosystems. The presence of archaeal members is scarce in both systems. Only sequences clustering with the *Thermoplasmata* have been retrieved in the bottom layer of Nuestra Señora del Carmen and one station of Río Tinto. Although the photosynthetically active radiation values measured in this lake upper layer were low, they were sufficient to activate photosynthesis in acidophilic microorganisms. All identified photosynthetic microorganisms in Nuestra Señora del Carmen (members of the *Chlamydomonas*, *Zygnemopsis* and *Klebsormidium* genera) are major members of the photosynthetic eukaryotic community characterized in Río Tinto basin. This study demonstrates a close relationship between the microbial diversity of Nuestra Señora del Carmen pit lake and the diversity detected in the Río Tinto basin, which underlain the influence of the shared mineral substrates in the microbial ecology of these ecosystems. [Int Microbiol 2014; 17(4):225-233]

Keywords: iron cycle · acidic pit lakes · acidophilic microorganisms · Río Tinto · Iberian Pyrite Belt

Introduction

Extreme acidic environments are rather scarce and mainly associated with volcanic and metal mining activities [16,24]. The peculiar ecology and physiology of acidophilic microorganisms have interested microbiologists since their discovery [12] because the extreme acidic conditions in which they develop are the product of microbial metabolism. In mining areas, oxidation of metal sulfides by acidophilic chemolithotrophic microorganisms leads to the formation of highly acidic, metal-laden waters [34] known as acid mine drainage (AMD).

The Iberian Pyrite Belt (IPB) represents one of the world’s largest accumulations of mine wastes and AMDs [40]. Currently, there are more than 25 pit lakes between the provinces of Huelva and Seville (SW Spain) [31]. IPB pit lakes are nor-
mally acidic and present a wide range of sizes, depths, and physico-chemical characteristics. Their low pH and high concentrations of toxic heavy metals have limited the biological diversity of these lakes [42]. Nuestra Señora del Carmen (NSC) is a 110-m long and 80-m wide pit lake from the IPB, with a depth of 34 m and a volume of ca. 79,500 m3 [44], an acidic pH (between 2.1 and 2.5), and high concentrations of sulfate and toxic heavy metals (Fig. 1 and Table 1).

The geomicrobiology of the IPB is mainly known from studies of the Río Tinto basin [2,3,4,19,20,21,33,47] or Río Odiel basin [30]. However, our knowledge of microbial diversity in pit lakes from this area is far from complete since very few studies have been reported [17,42,48]. In addition, most studies of the geomicrobiology of the IPB have focused on the biological oxidation of iron and sulfur, due to their importance in biohydrometallurgical processes, whereas little attention has been paid to the biological reduction of these elements under the anoxic conditions existing at the bottom of these lakes. To improve the efficiency of biohydrometallurgical operations, especially those in which control of environmental conditions is difficult such as heap leaching, it is necessary to gain information on the microbial ecology operating in these ecosystems.

In this work we compared the microbial ecology of the water column of an extreme acidic pit lake, NSC, with the diversity detected along the course of Río Tinto, a well-established model of AMD of the Iberian Pyrite Belt (Fig. 1).

Materials and methods

Sampling. Field measurements and water and sediments sampling in the Río Tinto basin were carried out in May 2005 [20] and those in the NSC pit lake were carried out in May 2009 [42]. The Río Tinto environmental conditions were those described by Garcia-Moyano et al. [20]. Environmental conditions for the water column of the pit lake were measured with a Hydrolab Datasonde S5 probe (Hach, USA). Water samples were collected from different depths using an opaque, 2.2-l PVC bottle (Beta Plus Wildlife Supply). All samples were filtered on site with 0.45-µm membrane filters from Millipore, stored in 125-ml polyethylene bottles, acidified with HNO$_3$ (1 ml), and kept at 4°C during transport. One-liter water samples for DNA extraction were collected and immediately filtered in situ through a Millex-GS Millipore filter (pore size, 0.22 µm; diameter, 50 mm). Filters were stored at -20°C.
until further processing. Sediment samples were obtained as described in Garcia-Moyano et al. [20]. Sediment samples were collected at 1 cm deep. Samples for microscopic observation were collected in sterile tubes, fixed with 2% of formaldehyde and kept at 4°C until further analysis.

Analytical procedures. Water samples were analyzed by atomic absorption spectrometry (AAS, Varian SpectrAA 220FS), inductively coupled plasma–atomic emission spectrometry (ICP-AES, Varian Vista MPX), and inductively coupled plasma–mass spectrometry (ICP-MS, Leco Renaissance). The accuracy of the analytical methods was verified against certified water references (TM-27.3 and TMDA-51.3 from the National Water Research Institute). Fe(II) concentration was measured by reflectance photometry with a Merck RQflex10 reflectometer and Reflectoquant analytical strips. Dissolved organic carbon (DOC) was analyzed by a Shimadzu TOC-V CPH analyzer and nitrogen and phosphorus by absorption UV-Vis spectrophotometry with an Alliance Integral Plus continuous flow autoanalyzer.

Microscopy and morphotype identification. Identification of alga and heterotrophic protists was carried out down to the lowest possible taxonomic level by direct microscopic observation of different morphological features based on previous studies of the eukaryotic communities in acidic environments [2–4]. A Zeiss Axioscope 2 microscope equipped with phase-contrast was used in this work.

DNA extraction, PCR amplification and sequencing. Fast DNA Spin kit for soil (MP Biomedicals, CA, USA) was used for DNA extraction according to the manufacturer’s instructions. Samples were washed five times with TE buffer (10mM TrisHCl, 1mM EDTA, pH 8.0) prior to DNA extraction. DNA was purified by passage through a GeneClean Turbo column (MP Biomedicals, CA, USA). The 16S and 18S rRNA genes were amplified according to previously described methodologies [2,21] using the universal Bacteria-specific primers 27f and 1492r [29], Archaea-specific primers 21f and 1492r [1,14], and Eukarya-specific 20f and 1800r primers [2]. PCR amplified genes were purified by GeneClean Turbo Column (MP Biomedicals, CA, USA) and cloned using the Topo TA Cloning Kit (Invitrogen, CA, USA). M13f and M13r primers were used for sequencing. PCR products were directly sequenced using a Big-Dye sequencing kit (Applied Biosystem) according to manufacturer’s instructions.

Phylogenetic analysis. Sequences were analyzed using BLAST at the NCBI database (http://ncbi.nlm.nih.gov/BLAST) and added together with the most important BLAST hits to create a database of over 50,000 homologous prokaryotic 16S rRNA primary sequences by using the ARB software package aligning tool [32]. Phylogenetic trees were generated using parsimony and neighbor-joining with a subset of 100 nearly full-length sequences (>1,400 bp). Filters which excluded highly variable positions were used.

An ARB-generated distance matrix was used as the input file to DOTUR program [45] and sequences were clustered into operational taxonomic units (OTUs) based on 100% and 97% sequence of similarity. Rarefaction analysis and the Chao1 non-parametric diversity estimator [9] were applied to the clone library in order to estimate how completely the library had been sampled and to extrapolate to total sequence diversity. Community diversity was studied by estimating the similarity between communities based on members and structure [45].

Sequences used in this study can be found in the EMBL sequence database under accession numbers JF737859–JF737929, JF807634–JF807641 and KC619546–KC619624 [19,42].

Multivariate analysis. Data were analyzed using a combination of constrained and unconstrained multivariate statistical methods in order to account for both total variations in the data and variations explainable by environmental data. Of the analyzed elements, we retained 12 environment variables that had no missing values, 8 chemical elements (SO$_4^{2-}$, Fe(II), Fe(III), Cu, Co, Zn, Mn and Ni) and pH, redox potential, electric conductivity, and

Table 1. Water chemical composition and physicochemical parameters measured at Río Tinto and Nuestra Señora del Carmen. The table shows the average values for pH, redox potential (ORP), electric conductivity (EC), dissolved oxygen (DO) and major elements of Río Tinto basin and NSC pit lake. (b.d.l.): below detection limit of the technique.

<table>
<thead>
<tr>
<th></th>
<th>Nuestra Señora del Carmen</th>
<th>Río Tinto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NSC 0.1 m</td>
<td>NSC 5 m</td>
</tr>
<tr>
<td>pH</td>
<td>2.4</td>
<td>2.1</td>
</tr>
<tr>
<td>ORP (mV)</td>
<td>534</td>
<td>375</td>
</tr>
<tr>
<td>EC (mS/Cm)</td>
<td>8.11</td>
<td>9.09</td>
</tr>
<tr>
<td>DO (mg/l)</td>
<td>8.12</td>
<td>0.09</td>
</tr>
<tr>
<td>SO$_4^{2-}$ (g/l)</td>
<td>6.36</td>
<td>6.40</td>
</tr>
<tr>
<td>Fe(II) (mg/l)</td>
<td>0.90</td>
<td>338</td>
</tr>
<tr>
<td>Fe(III) (mg/l)</td>
<td>596</td>
<td>368</td>
</tr>
<tr>
<td>Cu (mg/l)</td>
<td>27.4</td>
<td>28.6</td>
</tr>
<tr>
<td>Co (mg/l)</td>
<td>0.65</td>
<td>0.67</td>
</tr>
<tr>
<td>Zn (mg/l)</td>
<td>8.20</td>
<td>8.99</td>
</tr>
<tr>
<td>Mn (mg/l)</td>
<td>77.8</td>
<td>82.2</td>
</tr>
<tr>
<td>Ni (mg/l)</td>
<td>0.78</td>
<td>0.77</td>
</tr>
</tbody>
</table>
dissolved oxygen values (Table 1). Environmental data were transformed using ln(x+0.1) and normalized to zero mean and unit variance. Canonical correspondence analysis (CCA) was used to relate the microbial community data with environmental data. It was conducted using OTUs of 16S rRNA genes acquired at different sampling stations (18 samples from 9 different stations for the river) and 2 depths for the pit lake. Samples from the river were collected from sediments (S) or water column (W) for every station. The analyzed pit lake samples were from the surface (NSC01) and from 15-meter depth (NSC15). The significances of the first CCA axis and of all CCA axes combined were tested using Monte Carlo permutation tests. CCA tests were performed by using the multivariate data analysis software CANOCO 4.5 [7]. The program CANODRAW 4.0 in the Canoco package was used for graphical presentation of ordination results [7].

Results and Discussion

Nuestra Señora del Carmen (NSC) was an open cast exploitation abandoned in 1976 [26]. The NSC pit lake is acidic with high concentrations of sulfate and metals (Mg, Fe, Al, Mn and Cu) (Table 1). It is usually a meromictic lake, showing chemical stratification [43,44]. However, at the beginning of some dry winters, a period of mixing and total homogenization could be observed, temporarily transforming it into a holomictic lake. This process ended after intense episodes of rain [44]. In May 2009, the pit lake showed a two-layer chemical and thermal stratification: a 2-meter thin upper layer and a denser homogeneous bottom layer (from 3 m to 35 m depth) (Fig 2). High redox potentials values corresponding to oxygen-saturated conditions were measured in the upper layer, where Fe was predominantly oxidized (Table 1). The bottom layers of acidic meromictic lakes are usually anoxic, which favour the microbial reduction of iron, generating low redox potentials [6,8,15,22,36,37,49]. By contrast, during this study the bottom layer of the NSC pit lake was in a slightly reducing condition with similar concentrations of reduced and oxidized iron (Table 1). This peculiar distribution of the iron redox pair has been previously detected in other acidic pit lakes [23,37]. Preliminary studies in the NSC pit lake [43,44] revealed variable Fe(II)/Fe(III) ratios in the bottom layer as a consequence of the lake dynamics. During the mixing period, dissolved oxygen increases in the bottom layers promoting biological iron oxidation processes, thus reducing the Fe(II)/Fe(III) ratio. When stratification was restored, an increase in the Fe(II)/Fe(III) ratio due to microbial anaerobic respiration was detected [43,44]. Photosynthetically active radiation (PAR) was 4000 μmol/s.m² in the surface and practically zero from 2 meters deep up to the bottom (Fig. 2).

![Fig. 2. Physicochemical variables of the NSC pit lake. Temperature (T), electric conductivity (EC), dissolved oxygen (DO), redox potential (ORP), chlorophyll-a (CHL-a) and photosynthetically active radiation (PAR).](image)
We took advantage of the recent characterization of the microbial diversity analyzed in two layers (surface and 15 m depth) of the NSC pit lake [42] for its comparison with the diversity reported for different sampling stations along the Río Tinto basin [20]. In the upper layer of the NSC pit lake, almost 80% of the identified sequences belonged to the Alphaproteobacteria class, being Acidiphilium the most abundant phylotype. Only 20% of the sequences detected at the surface were related to the Nitrospirae phylum, all clustering within the genus Leptospirillum. Additionally, sequences belonging to the Planctomycetes phylum (2%), the Gammaproteobacteria class (2%) and the Acidisphaera genus (2%) were detected in this layer (Fig. 3). No sequences belonging to the archaeal domain could be retrieved from the surface sample.

By contrast, at 15 m depth, 39% of the sequences all related to the Gammaproteobacteria class, clustered within the species Acidithiobacillus ferrooxidans. A 28% of the sequences were related to the Nitrospirae phylum, with Leptospirillum being the most abundant genus and 26% of the sequences clustered within the Actinobacteria class. Sequences related to the Chloroflexi (4%) and Acidisphaera (1%) genera were also detected (Fig. 3). Sequences belonging to the archaeal domain, all of them related to the Euryarchaeota
phylum, specifically to the *Thermoplasmata* class, were identified in this layer.

As expected, Fe(II) concentrations in the upper layer of the NSC pit lake and the water column of Rio Tinto were extremely low (Table 1). Even though at the surface *Acidiphilium* spp. together with photoreduction of iron could generate Fe(II), the reduced form of iron does not accumulate because is rapidly oxidized by iron oxidizing bacteria, like *Leptospirillum* [5,11,18,41,42].

When compared to the diversity reported for Rio Tinto’s water column the most important difference was the absence of the iron oxidizing bacteria *A. ferrooxidans* in the upper oxidized layer of the pit lake (Fig. 3). Considering the physicochemical characteristics of both systems (Table 1 and Fig. 2) and the fact that *A. ferrooxidans* is present at the 15-m deep layer, a possible interpretation is that *A. ferrooxidans* is mainly involved in the reduction of Fe rather than its oxidation in this ecosystem.

The bottom layer of the NSC pit lake showed a higher level of diversity, which correlates with the higher diversity observed in the sediments of the Rio Tinto basin [20]. In this case, the detected *Acidithiobacillus* spp. and members of the *Acidimicrobiaeae* family, both facultative iron reducing bacteria under anoxic conditions [13], could be responsible of the increase in the Fe(II)/Fe(III) ratio in this layer when the pit lake was chemically stratified, while *Leptospirillum* and some *Acidimicrobiaeae* members could oxidize iron when stratification broke down and the mixing introduced oxygen in the bottom layer. A similar situation might be operating in the sediments of Rio Tinto, in which iron reducers of the *Acidithiobacillus*, *Acidiphilium* and *Acidimicrobium* genera can be found together with iron oxidizers of the *Leptospirillum*, *Ferrovum* like and *Ferrimicrobium* genera, although in this case the influence of an effective compartmentalization facilitated by the semisolid matrix of the sediments, inconstant in the water column, has to be considered.

A sulfur cycle is also operating at the bottom layer of the NSC similarly to the Rio Tinto basin. Reduced sulfur compounds are the energy source used by *A. ferrooxidans* during anaerobic respiration [25]. In addition, some strains of *A. ferrooxidans* and *Thermoplasmata* could grow anaerobically using hydrogen as electron donor and sulfate as an electron acceptor [25,35]. Sulfate-reducing bacteria were not detected in the NSC pit lake while microorganisms capable of this anaerobic respiration were identified in the Rio Tinto sediments [38,39] (Fig. 3). This is probably due to the environmental compartmentalization that can be generated in the sediments. Although microbial sulfate reduction can proceed in environments with a low pH, it is well established that inhibition processes are present in AMD systems. Possible inhibitory factors include the metabolites and organic acids, which can be toxic depending on pH. Metal sulfide precipitation and competition with other bacteria, namely iron-reducing bacteria, can inhibit sulfate reduction [28]. Based on this, it is easier to find SRB in Rio Tinto sediments than in the NSC water column. Sediment microniches are suitable for the SRB activity, while in the water column the SRB activity is easily inhibited.

Sequences closely related to *Chloroflexi* have been detected in both the NSC pit lake and the water column of one Rio Tinto sampling site (RT8) [19,42]. This type of sequences have been retrieved from different mine drainage environments [20,46,50]. Although the role of these bacteria in extreme acidic environments has to be clarified, bacteria belonging to this phylum have been isolated and related with the iron cycle [27].

No archaeal sequences could be retrieved neither in the upper layer of NSC nor in the Rio Tinto water column. However, sequences related to the *Euryarchaeota* phylum of *Archaea*, specifically to the *Thermoplasmata* class, were detected in the bottom layer of the pit lake and the sediments of one sampling station from the Rio Tinto basin (RT9).

The eukaryotic 18S rRNA gene clone library for NSC only showed positive results for the surface layer. In this layer, measured PAR values were low (Fig. 2), but sufficient to activate photosynthesis in acidophilic species [10]. All identified sequences were related to the genus *Chlamydomonas*, although microscopic observations also showed the presence of filamentous algae related to the *Zygnemopsis* and *Klebsormidium* genera as well as diatoms belonging to the genus *Pinnularia*, which could not be detected by molecular techniques [2]. *Chlamydomonas* is one of the most abundant algae detected in the Rio Tinto basin, followed by the filamentous algae belonging to the *Zygnemopsis* and *Klebsormidium* genera [3]. In the river, diatoms have been detected mainly associated to the most extreme conditions [3]. Although the level of eukaryotic diversity detected in the Rio Tinto basin is much higher than in the NSC pit lake due to its size (92 km) and the existence of very productive biofilms covering the rocks along the entire course of the river [2,3,4] the similarities existing between both ecosystems are noteworthy.

Canonical correspondence analysis (CCA) was used to correlate microbial community data with environmental data in both ecosystems. Fig. 4 shows the results of this analysis as a three biplots, to facilitate its interpretation. The CCA was conducted using OTUs of 16S rRNA genes acquired at different depths for the NSC pit lake and different sampling stati-
ons for the Río Tinto basin. Samples are plotted in different areas of the diagram depending on their environmental characteristics. The CCA generates an ordinate diagram in which axes are created by a combination of environmental variables. The eigenvalues for each axis generated by CCA indicate how much of the variation seen in the species data can be explained by that canonical axis. A 51% of the correlation between OTUs, sample sites and environmental data was explained by two axes. The presence or absence of data was used for bacterial and archaeal OTUs. Different OTUs are represented by genera names and triangles. Environmental variables used in the analysis are shown by arrows. Sampling sites are indicated by dots and the station name (NSC01, NSC15, RT1, RT1s, RT2, RT2s, RT3, RT5, RT5s, RT6, RT8, RT9, RT10, RT11s). Samples from the river were from sediments (S) or water column (W). Pit lake samples analyzed were from the surface (NSC01) and from 15-m depth (NSC15). Units of the elements were mg/l. Units of sulfate was g/l. Units of environmental data were mV for redox potential (ORP), mS/cm for electric conductivity (EC) and mg/l for dissolved oxygen (DO).

Fig. 4. Canonical correspondence analysis based on variance of species (OTUs) with respect to environmental data. Results were graphed in three biplots. The eigenvalues for each axis generated by CCA indicate how much of the variation seen in species data can be explained by that canonical axis. A 51% of the correlation between OTUs, sample sites and environmental data was explained by two axes. The presence or absence of data was used for bacterial and archaeal OTUs. Different OTUs are represented by genera names and triangles. Environmental variables used in the analysis are shown by arrows. Sampling sites are indicated by dots and the station name (NSC01, NSC15, RT1, RT1s, RT2, RT2s, RT3, RT5, RT5s, RT6, RT8, RT9, RT10, RT11s). Samples from the river were from sediments (S) or water column (W). Pit lake samples analyzed were from the surface (NSC01) and from 15-m depth (NSC15). Units of the elements were mg/l. Units of sulfate was g/l. Units of environmental data were mV for redox potential (ORP), mS/cm for electric conductivity (EC) and mg/l for dissolved oxygen (DO).

Metals (with the exception of Mn), sulfate, redox potential (ORP) and electric conductivity (EC) correlate inversely with pH and dissolved oxygen. The most important conclusion is that there is an important homogeneity in most of the samples, both at the physical-chemical and microbiological level. This is the reason why so many data occupy the centre of the graph, and the size of the arrows are rather small. The microorganisms appearing in most sampling stations were *Leptospirillum*, followed by *Acidiphilium*, *Metallibacterium*, *Acidithiobacillus*, *Ferrimicrobium* and *Acidisphaera*, all of them present in NSC and Río Tinto samples (Fig. 4). Río Tinto sampling stations RT1, RT3, and RT8 appear at the centre of the graphs. They are very similar, so they can be considered the most representative samples of the river from an environmental and microbiological point of view (Fig. 4). These samples show the highest concentrations on sulfate, Ni and Co. These stations are the closest to the deep layer of the NSC pit lake. The dissolved oxygen concentration is the only difference.

From this analysis, it is clear that the NSC acidic pit lake has many common geomicrobiological features with the Río Tinto basin that underlie the influence of the shared substrates of the IPB in the microbial ecology of both ecosystems. This study demonstrates a close relationship between the microbial diversity of NSC acidic pit lake and the diversity detected in the Río Tinto basin. The canonical correspondence analysis identified members of the *Leptospirillum, Acidiphilium*, *Metallibacterium, Acidithiobacillus*, *Ferrimicrobium* and *Acidisphaera* as the most representative microorganisms of both ecosystems. The presence of archaeal members was scarce in both systems. Only sequences clustering with the *Thermoplasmata* were retrieved in the bottom layer of NSC.
and one sampling station of Río Tinto. Although the measured PAR values were very low in the upper NSC layer, they were sufficient to activate photosynthesis in acidophilic microorganisms. All identified photosynthetic microorganisms in the NSC (members of the *Chlamydomonas*, *Zygnemopsis* and *Klebsormidium* genera) were important members of the characterized photosynthetic eukaryotic community identified in the Río Tinto basin, which underlines the commonality between both ecosystems also at the eukaryotic level.

Acknowledgements. This work has been supported by grants CGL2011-22540 and CGL2009-11059 from the MINECO, Grant 478 from IGME and grant 250-350-IPBSL from ERC.

Competing interests. None declared.

References

