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Summary. The structural genes for the nickel and cobalt resistance of the con-
jugative plasmid pEJH 501 of Hafnia alvei 5-5, contained on a SalI-EcoRI frag-
ment of 4.8 kb, were cloned and sequenced. The DNA sequence included five
genes in the following order: ncrA, ncrB, ncrC, ncrY, and ncrX. The predicted
amino acid sequences of ncrA were homologous to the amino acid sequences of
nreB of Achromobacter xylosoxidans 31A. Expression of ncr with the T7 RNA
polymerase-promoter system allowed Escherichia coli BL21 (DE3) to overexpress
NcrA, NcrB, and NcrC but not NcrY, and NcrX. The apparent molecular masses of
NcrA, NcrB, and NcrC were 30, 33, and 17 kDa, respectively. Primer-extension
analysis showed that ncr mRNA started at nucleotide position 23 upstream from
ncrA. The promoter region of the ncr operon possessed a strong, putative –35 ele-
ment of σ32-type promoter sequence, and transcriptional 'lacZ fusion studies indi-
cated that the –35 element influenced σ32-specific transcription. [Int Microbiol
2004; 7(1):27–34]
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Introduction

Nickel is a trace element that serves as an essential con-
stituent of enzymes, such as hydrogenase, CO dehydroge-
nase, and urease in bacteria [10]. However, excess nickel
ions interact with cellular components, such as amino acids
and nucleotides, resulting in a disturbance of enzyme activ-
ity, DNA replication, transcription, and translation [1,16].
Plasmid-mediated resistance to nickel has been described in
Ralstonia metallidurans CH34 [7,8,15,17,32–34] and
Achromobacter xylosoxidans 31A [28–30]. Resistance is due
to the action of an inducible, operon-encoded energy-depend-
ent specific efflux system that secretes the cation from the
cell thereby lowering the intracellular concentration of the
toxic compound [31].

The cnr (cobalt-nickel resistance) operon of the R. metal-

lidurans CH34 plasmid pMOL28 consists of cnrYXHCBA.
The genes cnrCBA encode a membrane-bound protein com-
plex catalyzing an energy-dependent efflux of cobalt and
nickel [5]. The mechanism of action of the CnrCBA complex
may be that of a proton/cation antiporter based on the consid-
erable similarity of CnrCBA amino acid sequences to those
of CzcCBA (for cadmium-zinc-cobalt resistance). The topo-
logical orientation and function in the membrane of CzcCBA
have been well-studied in strain CH34 [20,21,23]. The Cnr
regulatory genes cnrYXH are arranged in a region upstream
of the structural genes and are responsible for full transcrip-
tion of the CnrCBA structural resistance genes. CnrH, a 21-
kDa protein, belongs to a sigma factor of the extracytoplas-
mic function (ECF) family, whose members share a helix-
turn-helix motif at the carboxy terminus [18,24,37]. CnrX,
which may function as a periplasmic sensor, contains histi-
dine residues that probably bind nickel ions. CnrY is a trans-
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acting regulatory protein thought to act as a repressor or anti-
sigma factor [7].

The ncc (nickel-cobalt-cadmium resistance) operon of the
A. xylosoxidans 31A pTOM9 comprises seven open reading
frames (ORFs), nccYXHCBAN, and the encoded proteins
share strong homology to proteins encoded by cnrYXHCBA
[30]. The NccCBA complex also shows close similarities to
the CzcCBA complex, which seems to be a three-component
cation-proton antiporter [30]. NccH probably belongs to a
family of ECF σ70-like proteins, as it has the conserved
regions of the ECF sigma factors. NccX contains several his-
tidine residues and seems to be capable of binding nickel
ions; therefore, the protein may function as a periplasmic
sensor. NccY is a trans-acting regulatory protein and down-
regulates the operon [30].

In addition to the ncc locus, A. xylosoxidans 31A contains
another nickel resistance locus, nre, on plasmid pTOM9,
which confers a low level of resistance [8,30]. Gene nreB is
induced by nickel and may be involved in resistance by
efflux coupled to a chemiosmotic gradient. The topological
orientation of this gradient in the membrane has been eluci-
dated largely by comparison with proteins of the major facil-
itator superfamily (MFS) transporters [8].

In this work, we have determined the complete nucleotide
sequence of the 4.8-kb SalI–EcoRI fragment containing the
ncr (nickel-cobalt resistance) operon from the 70-kb plasmid
pEJH501 of Hafnia alvei 5-5. Five ORFS for the genes
ncrABCYX were found. The products of the predicted trans-
lation product of ncrA and ncrB were consistent with those of
nreB and nreA [22].

Materials and methods

Bacterial strains, plasmids, and growth conditions. The bacterial
strains and plasmids used in this study are described in Table 1. Growth
conditions for Hafnia alvei 5-5 were described previously [22]. The bacter-
ial culture was deposited in the Deutsche Sammlung von Mikroorganismen
und Zellkulturen GmbH (DSMZ) in Braunschweig, Germany, with the num-
ber DSM 15533. Escherichia coli strains were grown at 37°C in Tris min-
eral medium supplemented with 0.3% (w/v) gluconate as carbon source [17].
Amino acids, when necessary, were added at a concentration 20 µg/ml after
filtration. For maintenance of plasmid markers, filter-sterilized solutions of
antibiotics were added, as appropriate, to the following final concentrations:
ampicillin, 100 µg/ml, kanamycin 30 µg/ml, and chloramphenicol 15 µg/ml
for E. coli. Clones of E. coli DH5α harboring recombinant pUC plasmids
were identified on LB agar plates containing 100 µg ampicillin/ml, 40 µg
5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside/ml, and 0.2 mM iso-
propyl-β-D-thiogalactopyranoside (IPTG) (Duchepa, Netherlands).

PARK ET AL.

Table 1. Bacterial strains and plasmids used in this study

Bacterial strain and plasmid Relevant genotype Reference

Bacterial strains
Hafnia alvei

5-5 WT, Nir DSM 15533
ATCC13337 WT, Nis DSM30163

Escherichia coli
DH5 supE44 lacU169(ø80lacZ M15)

hsdR17 recA1 endA1 relA1 GIBCO BRL (USA)
BL21 (DE3) F-dcm ompT hsdS (rB- mB-) galDE3 Stratagene (USA)
CSR603 recA1 uvrA6 phr-1 [27]

Plasmids
pBluescriptII KS (+) Cloning vector Stratagene (USA)
pBR322 Cloning vector Promega (USA)
pUJ9 Cloning vector [4]
pT7-6 Expression vector [36]
pEJH501 70 kb from H. alvei 5-5 This study
pHF14 4.8 kb, SalI-EcoRI fragment of pEJH501 in pBR322 This study
pURS882 0.8 kb, SmaI fragment of pHF14 in pUJ9 This study
pRCS208 2.6 kb, SalI-ClaI fragment of pHF14 in pBluescriptII KS (+) This study
pREC203 1.9 kb, ClaI-EcoRI fragment of pHF14 in pBluescriptII KS (+) This study
pRSD401 0.8 kb, SmaI fragment of pHF14 in pBluescriptII KS (+) This study
pRSD402 1.1 kb, NcoI fragment of pHF14 in pBluescriptII KS (+) This study
pRSD403 2.8 kb, KpnI-SmaI fragment of pHF14 in pBluescriptII KS (+) This study
pRSD404 0.9 kb, ClaI-SmaI fragment of pHF14 in pBluescriptII KS (+) This study
pRSD405 1.3 kb, SmaI-ClaI fragment of pHF14 in pBluescriptII KS (+) This study
pRSD406 1.8 kb, EcoRV-EcoRI fragment of pHF14 in pBluescriptII KS (+) This study

WT, wild type; s, sensitive; r, resistance
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Chemicals, reagents, and enzymes. Analytical grade NiCl2·6H2O
(Sigma, St. Louis, MI, USA) was prepared as 1.0 M stock solution and steril-
ized by autoclaving. All enzymes were purchased from Promega (Madison,
WI, USA), TakaRa (Japan), and New England Biolab (Beverly, MA, USA).
[γ-32P] ATP (1000 Ci/mmol) and [α-35S] dATP (1000 Ci/mmol) were pur-
chased from Amersham (UK). β-Galactosidase activity was measured as
published before [19] and is reported in Miller units.

Genetic techniques. Standard molecular genetic techniques were as
described by Sambrook et al. [25] or as per the manufacturer’s instructions
unless mentioned specially. DNA sequences were obtained by the dideoxy-
mediated termination method of Sanger using an ABISEQ automatic
sequencer. Nucleotide and amino acid sequences were analyzed with the
sequence analysis software DNAMAN (Lynnon Biosoft), Clone Manager 5
(Scientific and Educational Software), and Align Plus (Scientific and
Educational Software). Homology searches were done using the BLAST
search algorithms located at the National Center for Biotechnology
Information site (http://www.ncbi.nlm.nih.gov/) on the World Wide Web.
The sequence has been submitted to GenBank (accession no. AF322866).
Hydropathy profiles were determined using the method of Hopp and Woods
[12,14].

Transcript analysis. Total RNA was isolated from uninduced cells or
cells exposed to 300 µM NiCl2 for 2 h at 37°C during growth in Tris miner-
al medium by using the RNeasy total RNA preparation kit (Qiagen, Santa
Clara, Calif., USA). The transcription start site was identified by primer
extension using primer 5´-ACGCGTCGACTGCAGGAATTCACACTTT-
TAATCG-3´, which is complementary to nucleotides +28 to +49 down-
stream of P1, respectively. The primer was end-labeled using T4 polynu-
cleotide kinase (Promega, Madison, WI, USA) and [γ-32P] ATP following
standard protocols. For primer-extension experiments, a modification of the
Promega protocol was used. Two pmol of the primers were incubated with
30 µg RNA in 10 µl hybridization buffer (50 mM KCl, 25 mM Tris-HCl,
pH 8.3) at 65–75°C for 2 min and allowed to cool. AMV RT (1 U) was
used to extend the primer in a reaction mixture containing 50 mM KCl, 10
mM MgCl2, 10 mM dithiothreitol (DTT), 0.5 mM spermidine, and 1 mM
deoxynucleotide triphosphate. The reaction was carried out in a total volume
of 20 µl at 42°C for 30 min. After phenol-chloroform extraction, the
extended product was precipitated by the addition of 0.1 volume of 3 M
sodium acetate and three volumes of ethanol. The pellet was washed with

75% ethanol, dried, and dissolved in 10 µl H2O. The unlabeled primer was
used to generate a nucleotide sequence ladder using a Sequenase version 2.0
DNA sequencing kit (Amersham Life Science, Cleveland, Ohio, USA) with
[35S] dATP. Primer-extension products were separated in an 8 M urea/6%
polyacrylamide gel in parallel with the sequencing reactions in order to map
the transcription initiation site.

Protein expression. The ncr genes were expressed by the T7 RNA poly-
merase-promoter system [36]. The genes were cloned into a T7-promoter-
containing vector (pT7-6), and the resulting plasmid was transformed into E.
coli BL21 (DE3) bearing the T7 RNA polymerase gene (λ DE3 lisogen) for
expression of target proteins. Cells bearing plasmid were grown at 37°C
overnight in Luria Bertani (LB) medium containing 50 µg ampicillin/ml).
The culture was diluted 100-fold into 5 ml fresh LB medium, containing
ampicillin alone or ampicillin and nickel (250 µM), and was grown at 37°C.
When the culture reached the mid-exponential phase, 1.0 mM IPTG was
added to induce gene expression. Cultivation was continued for an addition-
al 2 h. Cells were pelleted by centrifugation and suspended in 500 µl of 10
mM Tris-HCl buffer (pH 7.0). Cells were then frozen at –20°C for 16 h and
disrupted on ice using an ultrasonicator (Lab Line, USA) at a continuous set-
ting output of 10 times for 10 s. After centrifugation at 9,000 rpm at 4°C for
20 min, the supernatant was added to the same volume of 10 mM Tris-HCl
buffer (pH 7.0) and the pellet was dissolved in 20 µl 2× Tricine sample
buffer [0.08 M Tris-Cl/SDS (pH 6.8), 24% (v/v) glycerol, 8% (w/v) SDS, 0.2
M DTT, 0.02% (w/v) Coomassie blue G-250]. Proteins were analyzed on a
10% Tris-Tricine/SDS-polyacrylamide gel [30% acrylamide/0.8% bisacry-
lamide, Tris×HCl/SDS (pH 8.45), glycerol, 10% (w/v) ammonium persul-
fate, TEMED].

Results

Cloning of determinant for nickel and cobalt
resistance (ncr). A 4.8-kb SalI–EcoRI DNA fragment
was cloned in several steps from the 70-kb plasmid pEJH501
of H. alvei 5-5 into the SalI–EcoRI sites of phagemid vector
pBluescript II KS (+), forming plasmid pHF14 [22]. When

NICKEL AND COBALT RESISTANCE IN H. ALVEI 5-5

Fig. 1. Restriction map of the 4.8-kb SalI–EcoRI fragment of
pHF14 and subclones derived therefrom. The minimal
inhibitory concentration (MIC) of nickel chloride for
Escherichia coli DH5a strains bearing these plasmids are
shown on the right. In
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plasmid pHF14 was transformed into E. coli, the cells grew
in the presence of 10 mM nickel chloride. However, plas-
mids containing subcloned DNA fragments conferred only
weak resistance to nickel, comparable to those with the plas-
mid pHF14 (Fig. 1). These results indicated that the 4.8-kb
SalI–EcoRI DNA fragment contains the intact determinant of
nickel resistance and functions in E. coli. To determine
whether a promoter was derived from sequences on the par-
ent plasmid pEJH501, the 822-bp SmaI fragment from
pHF14 was cloned into the SmaI site of plasmid pUJ9 con-
taining the promoterless reporter gene 'lacZ (Fig. 2). Cells of
E. coli DH5a carrying the resulting 'lacZ fusion plasmid
pURS882 expressed enhanced β-galactosidase activity, as the
concentration of nickel increased, while showing low levels
in the absence of inducer. These results indicated that this
fragment contains the promoter sequence of the intact nickel
resistance determinant of pEJH501, whose expression is
induced by nickel chloride.

Nucleotide sequence of the ncr operon. The
locus for nickel and cobalt resistance was localized to the
4.8-kb SalI-EcoRI fragment of DNA (Fig. 1). The complete
nucleotide sequence of the cloned fragment was determined
in both strands by sequence walking. Five potential open
reading frames (ORFs) for protein-coding regions were iden-

tified by computer analysis along with the proposed initiation
codons, stop codons, the proposed ribosome-binding sites,
and the deduced amino acid sequences. These protein-coding
regions were oriented in the same direction, and each ORF
contained an AUG translation start codon together with a
properly spaced ribosome-binding site (the nucleotide se-
quence of the 4800-bp DNA fragment of nickel resistance de-
terminants is deposited under the accession no. AF322866).

The first ORF, ncrA, starts 403 nucleotides from the
beginning of the insert and extends for 831 nucleotides, cor-
responding to 277 amino acids. ncrA has a weak ribosome-
binding site, AGC, located ten nucleotides upstream from the
initiation ATG codon. The ncrA product is a homologue of
NreB from A. xylosoxydans 31A and of NrsD from
Synechocystis sp. strain PCC6803 [6,13]. Both the amino
acid composition (77% nonpolar amino acids) and the
hydropathy profile (data not shown) indicate that the nreA
gene product should be localized primarily in the membrane.

The second reading frame, ncrB, starting at position 1243
and ending at position 2145, encodes a protein of 301 amino
acids that is a homologue of NreA of A. xylosoxydans 31A
[15]. The overall sequence identity between NreA and NcrB
was 78 % at the amino acid level. The presumed ribosome-
binding site of ncrB, GG, is located 6 nucleotides upstream
from the initiation ATG codon.

PARK ET AL.

Fig. 2. Construction of recombinant plasmid pURS882,
containing the promoter region including the 0.8-kb SmaI
fragment from plasmid pHF14.In
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The third reading frame, ncrC, beginning at position 2260
and ending at position 2715, comprises 456 bp, correspon-
ding to 152 amino acids. The presumed ribosome-binding
site, GGA, is located 15 nucleotides upstream from the initi-
ation ATG codon. There was no similarity to known proteins
involved in heavy metal resistance. There were no intergenic
sequences between ncrA and ncrB, and no promoter-like
sequence was found upstream from ncrB and ncrC, which
suggested that ncrABC, conferring nickel resistance, should
be read as a single transcript.

The fourth reading frame, ncrY, beginning at position
3709 and ending at position 3897, encodes 63 amino acids.
The presumed ribosome-binding site, GGA, is located 8
nucleotides upstream from the initiation ATG codon. RT-
PCR was used to search for the transcript of ncrY in E. coli
DH5a after cloning into plasmid pHF14. Total RNA was iso-
lated under induced condition and used as the template for
RT reactions, using the primer at the 3´ end of ncrY. Using
cDNA obtained from RT with ncrY primer, the PCR product
was amplified for ncrY. In addition, the putative promoter
was identified in the DNA region preceding ncrY and highly
conserved between cnrYp, cnrCp, nccYp, and nccCp promot-
ers. Previous work showed that transposon insertion in this
region caused E. coli to constitutively express resistance
[22]. This established that ncrY is expressed and may func-
tion as a trans-acting regulator.

The fifth reading frame, ncrX, starting at position 4354
and ending at position 4434, encodes a protein of 27 amino

acids. Previous work showed that transposon insertions in
this region also caused the constitutive expression of resist-
ance [22]. Those data also suggested that this gene functions
as trans-acting regulator.

RT-PCR experiments were done to search for a transcript
corresponding to the region between ncrC and ncrY. There
was no PCR product when a primer complementary to the
region flanking the 3´ end of ncrY and the 5´ end of ncrC was
used (data not shown). These data indicated that ncrABC and
ncrY were separated by 993 nucleotides that were not tran-
scribed.

Primer extension mapping of the ncrABC pro-
moter. To determine the location of the ncrABC promoter,
the transcriptional start site was mapped by primer extension
(Fig. 3). One distinct extension product was obtained, corre-
sponding to the A residue at a position 28 nucleotides
upstream from the initiation ATG codon. The deduced start
site is therefore 5´-C361CCCCGCCAGGATAATGCTTGT-
CATTTTTTT-3´ (the +1 nucleotide A375 is underlined). As
shown in Fig. 3, the –10 region (CCCCCGCCA) upstream of
the transcriptional start is separated from the –35 region
(TATCAGGCAACTA) by 14 nucleotides. This is a match to
the canonical sequence recognized by σ32-RNA polymerase.

Expression of ncrABC in E. coli. To determine
whether ncrABC was transcribed from the intrinsic promoter
and then expressed, the 4.8-kb SalI–EcoRI fragment was

NICKEL AND COBALT RESISTANCE IN H. ALVEI 5-5

Fig. 3. Primer-extension analy-
sis of the ncrABC transcript.
RNA was hybridized with a
primer complementary to 28–49
bp downstream of P1. Lane 1:
negative control without reverse
transcriptase; lane 2: extension
products from cells induced by
nickel chloride; lanes G, A, T,
and C: sequence ladder.
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inserted into the expression vector pT7-6, which yielded
pTF714, in which the ncr operon was placed under the con-
trol of the T7 promoter. E. coli BL21 (DE3), harboring
pNRS148, was grown in the presence of inducer, sonicated,
and then fractionated into membrane and soluble parts. The
inducible proteins were present in large amounts in the mem-
brane fractions and were determined to have apparent molec-
ular masses of 30, 33 and 17 kDa, as predicted for NcrA,
NcrB, and NcrC (Fig. 4).

Discussion

The cnr system enables R. metallidurans CH34 to grow in
the presence of 3 mM nickel and 5 mM cobalt ions [31].
The ncc system encodes high-level resistance to nickel (40
mM), cobalt (20 mM), and cadmium (1 mM) in A. xylosox-
idans 31A [29]. The nre system also confers the ability to tol-
erate nickel (3 mM) to A. xylosoxidans 31A [30]. Hafnia
alvei 5-5 was isolated from a soil-litter mixture underneath
the canopy of the nickel-hyperaccumulating tree Sebertia
acuminata in New Caledonia. The bacterium is able to grow
in the presence of 30 mM nickel as well as 2 mM cobalt
[27,35]. The level of nickel resistance is similar to that pro-
duced by ncc genes and higher than resistances conferred by
the cnr and nre systems. It was of interest, therefore, to iden-
tify the components of the nickel pump in H. alvei 5-5 and to
compare them with those of the cnr, ncc, and nre systems. As
a first step, the genes were sequenced and the amino acid
sequences of their potential protein products were deduced.

The DNA sequence of a 4.8-kb SalI–EcoRI fragment con-
tained five ncr genes, ncrA, ncrB, ncrC, ncrX, and ncrY. The
ncrA product is a homologue of NreB from A. xylosoxydans
31A [15] and NrsD from Synechocystis sp. strain PCC6803
[6,13]. Previous work suggested that NreB was responsible
for low-level nickel resistance by efflux and closely related
to MFS transporters [6]. From the hydropathic profile of the
NcrA protein, there were 15 regions of 18 or more amino acid
residues in length with a hydropathy index greater than 1.5,
which is indicative of possible membrane-spanning α-helices
for a transporter. NcrA has a broad range of metal-ion sub-
strates, i.e. nickel, cobalt and zinc, while NreB is more spe-
cific for nickel [22].

Although no significant homology was found between
NcrB, NcrC and proteins listed in the database, the overall
hydropathy profile is similar to that of membrane proteins.
TnPhoA´-1 mutagenesis has shown that the NcrB and NcrC
are necessary for nickel resistance and transport [22]. This
implies that NcrB and NcrC may in some way modify the
substrate specificity and activity catalyzed by NcrA.
Examples of proteins that change the substrate specificity of
enzymes include ArsC. This protein changes the substrate
specificity catalyzed by ArsA and ArsB thereby allowing
recognition of both arsenate and arsenite [3] and σ factors,
which alters the recognition site of RNA polymerase during
carbon starvation and heat-shock response [9,11]. Based on
these data, we propose a model in which NcrA, NcrB, and
NcrC form a membrane-bound complex catalyzing cobalt
and nickel efflux.

The promoter region of nreABC was characterized by
primer extension. The major reverse transcript corresponded
to a start site that was preceded by a σ32-recognized
sequence, indicating that Eσ32 would bind to this site with
high affinity. Our results support this possibility in that tran-
scriptional fusion of lacZ to this promoter produced high lev-
els of β-galactosidase to heat shock response. This was the
first instance in which a gene concerned with nickel resist-
ance has been shown to be regulated by a σ32 promoter.

The level of nickel resistance by NcrABC was higher
than that produced by NreA. One possibility is that the
NcrABC complex provides a more effective mechanism of
nickel resistance than NreA. This mechanism has been
observed for the ars operon of the R-factor R773 from E. coli
[2]. Cells expressing arsB exhibited an intermediate level of
arsenite resistance compared with cells expressing both arsA
and arsB. Arsenite exclusion by ArsB was coupled to electro-
chemical energy, while transport by the ArsA-ArsB complex
was coupled to ATP hydrolysis. Another possibility is that the
NcrABC complex is highly expressed, at levels comparable
to those producing a higher level of resistance. The promoter
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Fig. 4. SDS-PAGE of protein fractions. Proteins were separated on a SDS-
12% polyacrylamide gel and stained with Coomassie brilliant blue. Lane M:
molecular mass markers; lane l: total protein of E. coli BL21 (DE3) harbor-
ing pT7-6; lane 2: total protein of E. coli BL21 (DE3) harboring pHF14; lane
3: insoluble fraction of E. coli BL21 (DE3) harboring pHF14; lane 4: crude
extract of E. coli BL21 (DE3) harboring pHF14.
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region of nreABC was shown to be regulated by σ32, which
also directs core RNA polymerase to transcribe heat-shock
promoters. The transient increase in expression of heat-shock
genes after temperature up-shift results from increased tran-
scription initiation at heat-shock promoters, which is mediat-
ed by a transient 20-fold increase in the amount of σ32 per cell
[9]. Higher expression of NcrABC would be a more effective
mechanism of providing resistance to nickel ions present in
heavily contaminated environments, resulting in a selective
pressure for its evolution.
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Secuencia nucleotídica y expresión del determinante ncr
de resistencia a níquel y cobalto en Hafnia alvei 5-5
Resumen. Los genes estructurales de la resistencia a níquel y cobalto del
plásmido conjugativo pEJH 501 de Hafnia alvei 5-5, contenido en un frag-
mento SalI-EcoRI de 4,8 kb, fueron clonados y secuenciados. La secuencia
de DNA incluye cinco genes en el siguiente orden: ncrA, ncrB, ncrC, ncrY,
y ncrX. Las secuencias de aminoácidos equivalentes a ncrA fueron homólo-
gas a las secuencias de aminoácidos codificadas por nreB en Achromobacter
xylosoxidans 31A. La expresión de los genes ncr mediante el sistema pro-
motor de la RNA polimerasa T7 permite a Escherichia coli BL21 (DE3)
sobreexpresar NcrA, NcrB, y NcrC, pero no NcrY ni NcrX. Los pesos mo-
leculares aparentes de NcrA, NcrB y NcrC fueron 30, 33, y 17 kDa, respec-
tivamente. El análisis de extensión de los cebadores mostró que el mRNA de
ncr se iniciaba a una distancia de 23 nucleótidos corriente arriba del ncrA.
La región promotora del operón ncr posee una fuerte secuencia promotora
de tipo σ32 en la posición –35, y estudios transcripcionales de fusión con
´lacZ indicaron que el elemento situado en –35 influye sobre la transcripción
específica de σ32. [Int Microbiol 2004; 7(1):27–34]

Palabras clave: plásmido pEJH501 · operón NcrABCYX · secuencia
promotora de tipo σ32 · bacterias resistentes a níquel

Sequência nucleotídica e expressão do determinante ncr
de resistência à niquel e cobalto em Hafnia alvei 5-5
Resumo. Os genes estruturais de resistência à níquel e cobalto do plas-
mídeo conjugativo pEJH 501 de Hafnia alvei 5-5, contido em um fragmen-
to SalI-EcoRI de 4800 pares de bases (pb), foram clonados e sequenciados.
A sequência de DNA inclue cinco genes na seguinte ordem: ncrA, ncrB,
ncrC, ncrY, e ncrX. As sequências de aminoácidos equivalentes à ncrA
foram homólogas às sequências de aminoácidos codificadas para nreB em
Achromobacter xylosoxidans 31A. A expressão dos genes de ncr mediante o
sistema promotor da RNA polimerase T7 permite a Escherichia coli BL21
(DE3) supra-expressar NcrA, NcrB, e NcrC, porém não os genes NcrY e
NcrX. Os pesos moleculares aparentes de NcrA, NcrB e NcrC foram 30, 33,
e 17 kDa, respectivamente. A análise de extensão de iniciadores mostrou que
o mRNA de ncr era iniciado a uma distância de 23 nucleotídeos antes de
ncrA. A região promotora do operon de ncr possue uma sequência promoto-
ra putativa forte do tipo σ32 na posição –35, e estudos transcricionais de
fusão com ´lacZ indicaram que o elemento situado na posição –35 tem
influência na transcrição específica σ32. [Int Microbiol 2004; 7(1):27–34]

Palavras chave: plasmídeo pEJH501 · operon NcrABCYX · sequência
promotora do tipo σ32 · bactérias resistentes ao níquel


