International Microbiology, Vol 6, No 3 (2003)

Phaffia rhodozyma: colorful odyssey

Eric A. Johnson

Abstract


Phaffia rhodozyma was isolated by Herman Phaff in the 1960s, during his pioneering studies of yeast ecology. Initially, the yeast was isolated from limited geographical regions, but isolates were subsequently obtained from Russia, Chile, Finland, and the United States. The biological diversity of the yeast is more extensive than originally envisioned by Phaff and his collaborators, and at least two species appear to exist, including the anamorph Phaffia rhodozyma and the teleomorph Xanthophyllomyces dendrorhous. The yeast has attracted considerable biotechnological interest because of its ability to synthesize the economically important carotenoid astaxanthin (3,3´-dihydroxy-β, β-carotene-4,4´-dione) as its major pigment. This property has stimulated research on the biology of the yeast as well as development of the yeast as an industrial microorganism for astaxanthin production by fermentation. Our laboratory has isolated several mutants of the yeast affected in carotenogenesis, giving colonies a vivid array of pigmentation. We have found that nutritional and environmental conditions regulate astaxanthin biosynthesis in the yeast, and have demonstrated that astaxanthin protects P. rhodozyma from damage by reactive oxygen species. We proposed in the 1970s that P. rhodozyma could serve as an economically important pigment source in animal diets including salmonids, lobsters, and the egg yolks of chickens and quail, in order to impart characteristic and desirable colors. Although P. rhodozyma/Xanthomyces dendrorhous has been studied by various researchers for nearly 30 years, it still attracts interest from yeast biologists and biotechnologists. There is a bright and colorful outlook for P. rhodozyma/X. dendrorhous from fundamental and applied research perspectives.

Full Text: PDF

Sello de Calidad FECYT

 

 

5-year Impact Factor of International Microbiology is 2,10.

The journal is covered in several leading abstracting and indexing databases, including the following ones: AFSA Marine Biotechnology Abstracts; Biological Abstracts; Biotechnology Research Abstracts; BIOSIS Previews; CAB Abstracts; Chemical Abstracts; Current Contents–Agriculture, Biology & Environmental Sciences; EBSCO; Embase; Food Science and Technology Abstracts; Google Scholar; IEDCYT; IBECS; Latíndex; MedBioWorld; PubMed; SciELO-Spain; Science Citation Index Expanded; Scopus

 

Creative Commons License

This work, including photographs and other illustrations, unless the contrary is indicated, is subject to an Attributions–Non-Commercial–ShareAlike 3.0 Creative Commons License, the full text of which can be consulted at http://creativecommons.org/licenses/by-nc-sa/3.0/. You are free to share, copy, distribute and transmit the work provided that the author is credited and reuse of the material is restricted to non-commercial purposes only and that if you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. 

 

Copyright ® 2013 by Spanish Society for Microbiology (SEM)